cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211606 Total number of inversions over all involutions of length n.

Original entry on oeis.org

0, 0, 1, 5, 26, 110, 490, 2086, 9240, 40776, 185820, 855580, 4048616, 19455800, 95773496, 479581480, 2454041920, 12776826816, 67849286160, 366455145936, 2015621873440, 11268605368160, 64074235576736, 370040657037920, 2171138049287296, 12928631894588800, 78139702237771200
Offset: 0

Views

Author

Geoffrey Critzer, Feb 10 2013

Keywords

Examples

			a(3) = 5 because in the involutions of {1,2,3}: (given in word form) 213, 321, 132, 123, there are respectively 1 + 3 + 1 + 0 = 5 inversions.
		

References

  • R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 339.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n*(n-1)/2,
          n*((n-2)*(9*n-7) *a(n-1) +(n-1)*(9*n^2-13*n+2) *a(n-2))/
          ((n-2)*(9*n^2-31*n+24)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 12 2013
  • Mathematica
    (* first do *) Needs["Combinatorica`"] // Quiet (* then *)
    Table[Total[Map[Inversions, Involutions[n]]], {n, 0, 10}]
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (x^2/2 + x^3/3 + x^4/4) Exp[x + x^2/2], {x, 0, n}]]; (* Michael Somos, Jun 03 2019 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( (x^2/2 + x^3/3 + x^4/4) * exp(x + x^2/2 + x * O(x^n)), n))}; /* Michael Somos, Jun 03 2019 */

Formula

From Alois P. Heinz, Feb 12 2013: (Start)
a(n) = a(n-1) + (n-1)*a(n-2) + A000085(n-2)*(n-1)^2 for n>1; a(0) = a(1) = 0.
a(n) = (n*(n-2)*(9*n-7) *a(n-1) +n*(n-1)*(9*n^2-13*n+2) *a(n-2))/ ((n-2)*(9*n^2-31*n+24)) for n>=3; a(n) = n*(n-1)/2 for n<3.
E.g.f.: (x^2/2 + x^3/3 + x^4/4) * exp(x + x^2/2).
(End)
a(n) ~ sqrt(2)/8 * n^(n/2+2)*exp(sqrt(n)-n/2-1/4) * (1-3/(8*sqrt(n))). - Vaclav Kotesovec, Aug 15 2013

Extensions

a(13)-a(15) from Alois P. Heinz, Feb 10 2013
Further terms from Alois P. Heinz, Feb 12 2013