cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A023000 a(n) = (7^n - 1)/6.

Original entry on oeis.org

0, 1, 8, 57, 400, 2801, 19608, 137257, 960800, 6725601, 47079208, 329554457, 2306881200, 16148168401, 113037178808, 791260251657, 5538821761600, 38771752331201, 271402266318408, 1899815864228857, 13298711049602000
Offset: 0

Views

Author

Keywords

Comments

Apart from a(0), numbers of the form 11...11 (i.e., repunits) in base 7.
7^(floor(7^n/6)) is the highest power of 7 dividing (7^n)!. - Benoit Cloitre, Feb 04 2002
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=7, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=8, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010
This is the sequence A(0,1;6,7;2) = A(0,1;8,-7;0) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
From Wolfdieter Lang, May 02 2012: (Start)
6*a(n) =: z(n) gives the approximation up to 7^n for one of the three 7-adic integers (-1)^(1/3), i.e. z(n)^3 + 1 == 0 (mod 7^n), n>=0, and z(n) == 6 (mod 7) == -1 (mod 7), n>=1. The companion sequences are x(n) = A210852(n) and y(n) = A212153(n). This leads to a(n) == 1 (mod 7) for n>=1 (this is also clear from some of the formulas given below). Also 216*a(n)^3 + 1 == 0 (mod 7^n), n>=0, as well as 3*216*a(n)^2 + A212156(n) == 0 (mod 7^n), n>=0. a(n) = 6^(7^(n-1)-1) (mod 7^n), n>=1. A recurrence is a(n) = a(n-1) + 7^(n-1), with a(0)=0, for n>=1.
Also a(n) = (1/6)*(6*a(n-1))^7 (mod 7^n) with a(1)=1 for n>=1. Finally, 6^3*a(n-1)*a(n)^2 + 1 == 0 (mod 7^(n-1)), n>=1.
(End)

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 8*Self(n-1) - 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 08 2012
  • Mathematica
    LinearRecurrence[{8, -7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
    (7^Range[0,20]-1)/6 (* Harvey P. Dale, Aug 03 2020 *)
  • Maxima
    A023000(n):=floor((7^n-1)/6)$  makelist(A023000(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=(7^n-1)/6;  /* Joerg Arndt, May 28 2012 */
    
  • Sage
    def a(n): return (7**n-1)//6
    [a(n) for n in range(66)] # show terms
    # Joerg Arndt, May 28 2012
    

Formula

From R. J. Mathar, Jun 21 2009: (Start)
a(n) = 8*a(n-1) - 7*a(n-2).
G.f.: x/((1-x)*(1-7*x)). (End)
From Wolfdieter Lang, Oct 18 2010: (Start)
a(n) = 6*a(n-1) + 7*a(n-2) + 2, a(0)=0, a(1)=1.
a(n) = 7*a(n-1) + a(n-2) - 7*a(n-3) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3), a(0)=0, a(1)=1, a(2)=8. Observation by G. Detlefs. See the W. Lang comment and link. (End)
a(n) = 7*a(n-1) + 1 (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
a(n) = a(n-1) + 7^(n-1), with a(0)=0, n >= 1. - See a Wolfdieter Lang comment above, May 02 2012
E.g.f.: exp(4*x)*sinh(3*x)/3. - Stefano Spezia, Mar 11 2023

A212154 a(n) = (A212153(n)^3 + 1)/7^n, n >= 0.

Original entry on oeis.org

1, 18, 140, 20, 479393, 219600095, 4804461081, 686351583, 6679631931865, 82080661415031, 8898622841908566, 174149720118385232, 7290250572352382182, 65315972853762054047, 98713213404986046050649, 11532114009920222592500432, 356054521382275298405890644, 28999349909865958163356878647
Offset: 0

Views

Author

Wolfdieter Lang, May 02 2012

Keywords

Comments

a(n) is an integer because A212153(n) is one of the three solutions of X(n)^3+1 == 0 (mod 7^n), namely the one satisfying also X(n) == 5 (mod 7).
See the comments on A210853, and the Nagell reference given in A210848.

Examples

			a(0) = 1/1 = 1.
a(3) = (19^3 + 1)/7^3 = 6860/343  = 20, (b(3) = 19^7 (mod 7^3) = 19).
		

Crossrefs

Cf. A210848, A210849 (the p=5 case), A210853, A212153, A212156.

Programs

  • Mathematica
    Join[{1}, MapIndexed[(#^3 + 1)/7^#2[[1]] &, FoldList[PowerMod[#, 7, 7^#2] &, 5, Range[2, 20]]]] (* Paolo Xausa, Jan 14 2025 *)

Formula

a(n) = (A212153(n)^3 + 1)/7^n.
Showing 1-2 of 2 results.