cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212173 First integer with same second signature as n (cf. A212172).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 8, 4, 1, 1, 4, 1, 1, 1, 16, 1, 4, 1, 4, 1, 1, 1, 8, 4, 1, 8, 4, 1, 1, 1, 32, 1, 1, 1, 36, 1, 1, 1, 8, 1, 1, 1, 4, 4, 1, 1, 16, 4, 4, 1, 4, 1, 8, 1, 8, 1, 1, 1, 4, 1, 1, 4, 64, 1, 1, 1, 4, 1, 1, 1, 72, 1, 1, 4, 4, 1, 1, 1, 16, 16, 1, 1, 4
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Two integers have the same second signature iff the same exponents >= 2 occur in the canonical prime factorization of each integer, regardless of the order in which they occur in each factorization.

Examples

			12 = 2^2*3 has 1 exponent >= 2 in its prime factorization, namely, 2. Hence, its second signature is {2}.  The smallest number with second signature {2} is 4; hence, a(12) = 4.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Cf. A212172, A046523. All terms belong to A181800.

Programs

  • Magma
    A212173 := func; [A212173(n):n in[1..85]]; // Jason Kimberley, Jun 14 2012
    
  • Maple
    f:= proc(n) local E,i;
    E:= sort(select(`>`, map(t -> t[2], ifactors(n)[2]), 1),`>`);
    mul(ithprime(i)^E[i],i=1..nops(E))
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 19 2017
  • Mathematica
    Function[s, Sort[Apply[Join, Map[Function[k, Map[{#, First@ k} &, k]], Values@ s]]][[All, -1]]]@ KeySort@ PositionIndex@ Table[Sort@ DeleteCases[FactorInteger[n][[All, -1]], e_ /; e < 2] /. {} -> {1}, {n, 84}] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    a(n) = {my(sn = vecsort(select(x->(x>=2), factor(n)[,2]))); for (i=1, n, if (vecsort(select(x->(x>=2),factor(i)[,2])) == sn, return(i)););} \\ Michel Marcus, Jul 19 2017
  • Python
    from functools import reduce
    from sympy import factorint
    from operator import mul
    def P(n): return sorted(factorint(n).values())
    def a046523(n):
        x=1
        while True:
            if P(n)==P(x): return x
            else: x+=1
    def a057521(n): return 1 if n==1 else reduce(mul, [1 if e==1 else p**e for p, e in factorint(n).items()])
    def a(n): return a046523(a057521(n))
    print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Jul 19 2017
    

Formula

a(n) = A046523(A057521(n)) = A057521(A046523(n)).