A212191 Numbers whose squares are the sum of exactly three distinct powers of 2.
5, 7, 9, 10, 14, 17, 18, 20, 23, 28, 33, 34, 36, 40, 46, 56, 65, 66, 68, 72, 80, 92, 112, 129, 130, 132, 136, 144, 160, 184, 224, 257, 258, 260, 264, 272, 288, 320, 368, 448, 513, 514, 516, 520, 528, 544, 576, 640, 736, 896, 1025, 1026, 1028, 1032, 1040
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from Reinhard Zumkeller)
- J. D. Currie, There are ternary circular square-free words of length n for n >= 18, Elect. J. Combinatorics 9 (2002), Note #N10.
- James D. Currie, and Jesse T. Johnson, There are level ternary circular square-free words of length n for n != 5,7,9,10,14,17, arXiv:2005.06235 [math.CO], 2020.
- Arseny M. Shur, On Ternary Square-free Circular Words, Electronic J. Combin., Volume 17 (2010), Research Paper #R140.
Programs
-
Haskell
a212191 n = a212191_list !! (n-1) a212191_list = map a000196 a212190_list
-
Mathematica
Select[Range[1, 1000], Total[IntegerDigits[#^2, 2]] == 3 &] (* T. D. Noe, Dec 07 2012 *)
Formula
a(n)^2 = A212190(n).
Comments