cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005009 a(n) = 7*2^n.

Original entry on oeis.org

7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168, 14336, 28672, 57344, 114688, 229376, 458752, 917504, 1835008, 3670016, 7340032, 14680064, 29360128, 58720256, 117440512, 234881024, 469762048, 939524096, 1879048192, 3758096384
Offset: 0

Views

Author

Keywords

Comments

The first differences are the sequence itself. - Alexandre Wajnberg & Eric Angelini, Sep 07 2005

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), this sequence (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).
Row sums of (6, 1)-Pascal triangle A093563 and of (1, 6)-Pascal triangle A096956, n>=1.

Programs

Formula

G.f.: 7/(1-2*x).
a(n) = A118416(n+1,4) for n > 3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 2*a(n-1), for n > 0, with a(0)=7 . - Philippe Deléham, Nov 23 2008
a(n) = 7 * A000079(n). - Omar E. Pol, Dec 16 2008
a(n) = A173787(n+3,n). - Reinhard Zumkeller, Feb 28 2010
Intersection of A014311 and A212191: all terms and their squares are the sum of exactly three distinct powers of 2, A000120(a(n)) = A000120(a(n)^2) = 3. - Reinhard Zumkeller, May 03 2012
G.f.: 2/x/G(0) - 1/x + 9, where G(k)= 1 + 1/(1 - x*(7*k+2)/(x*(7*k+9) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
E.g.f.: 7*exp(2*x). - Stefano Spezia, May 15 2021

A212190 Squares that are the sum of exactly three distinct powers of 2.

Original entry on oeis.org

25, 49, 81, 100, 196, 289, 324, 400, 529, 784, 1089, 1156, 1296, 1600, 2116, 3136, 4225, 4356, 4624, 5184, 6400, 8464, 12544, 16641, 16900, 17424, 18496, 20736, 25600, 33856, 50176, 66049, 66564, 67600, 69696, 73984, 82944, 102400, 135424, 200704, 263169
Offset: 1

Views

Author

Reinhard Zumkeller, May 03 2012

Keywords

Comments

Squares with exactly three ones in their binary representation: A000120(a(n)) = 3;
squares in A014311;
a(n) = A212191(n)^2.

Crossrefs

Programs

  • Haskell
    a212190 n = a212190_list !! (n-1)
    a212190_list = filter ((== 1) . a010052) a014311_list
  • Mathematica
    Select[Range[1000]^2, DigitCount[#, 2, 1] == 3&] (* Jean-François Alcover, Nov 07 2016 *)

A220221 Odd positive integers k such that k^2 has at most three nonzero binary digits.

Original entry on oeis.org

1, 3, 5, 7, 9, 17, 23, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297
Offset: 1

Views

Author

John W. Layman, Dec 07 2012

Keywords

Comments

It is shown in the Szalay reference that if y is a term of this sequence then y=7, y=23, or y=2^t+1 for some positive t. Also see the Bennett reference.

Crossrefs

Cf. A212191 (exactly 3 powers).

Programs

  • Magma
    I:=[1,3,5,7,9,17,23,33,65,129]; [n le 10 select I[n] else 3*Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Nov 07 2014
  • Mathematica
    Select[Range[1, 1000000, 2], Total[IntegerDigits[#^2, 2]] <= 3 &] (* T. D. Noe, Dec 07 2012 *)
    CoefficientList[Series[(12 x^8 - 2 x^7 - 10 x^6 + 4 x^5 - 2 x^4 - 2 x^3 - 2 x^2 + 1) / ((x - 1) (2 x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 07 2014 *)
  • PARI
    is(n)=n%2 && hammingweight(n^2)<4 \\ Charles R Greathouse IV, Dec 10 2012
    
  • PARI
    Vec(x*(12*x^8-2*x^7-10*x^6+4*x^5-2*x^4-2*x^3-2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Nov 06 2014
    

Formula

a(n) = 3*a(n-1)-2*a(n-2) for n>9. - Colin Barker, Nov 06 2014
G.f.: x*(12*x^8-2*x^7-10*x^6+4*x^5-2*x^4-2*x^3-2*x^2+1) / ((x-1)*(2*x-1)). - Colin Barker, Nov 06 2014

Extensions

Extended by T. D. Noe, Dec 07 2012
Showing 1-3 of 3 results.