A212310
a(n) = n! mod 4^n.
Original entry on oeis.org
0, 1, 2, 6, 24, 120, 720, 5040, 40320, 100736, 483072, 2168064, 9239552, 53005312, 205203456, 930568192, 2004189184, 12596379648, 54936141824, 81714020352, 534768779264, 1334539714560, 2971594653696, 68346677035008, 232945365286912, 1038559528091648, 2232749779845120
Offset: 0
-
a(n) = n! % 4^n; \\ Michel Marcus, Jan 22 2021
-
import math
print([math.factorial(n)%(4**n) for n in range(99)])
A340810
Triangle T(n,k), n>=2, 2 <= k <= A214046(n), read by rows, where T(n,k) = n! mod k^n.
Original entry on oeis.org
2, 6, 8, 24, 24, 120, 16, 720, 48, 666, 5040, 128, 954, 40320, 384, 8586, 100736, 362880, 768, 26811, 483072, 3628800, 1280, 58725, 2168064, 39916800, 3072, 173259, 9239552, 234860975, 479001600
Offset: 2
n\k | 2 3 4 5 6
-----+---------------------------------------------
2 | 2;
3 | 6;
4 | 8, 24;
5 | 24, 120;
6 | 16, 720;
7 | 48, 666, 5040;
8 | 128, 954, 40320;
9 | 384, 8586, 100736, 362880;
10 | 768, 26811, 483072, 3628800;
11 | 1280, 58725, 2168064, 39916800;
12 | 3072, 173259, 9239552, 234860975, 479001600;
-
row[n_] := Module[{k = 1, s = {}}, While[k^n <= n!, k++; AppendTo[s, Mod[n!, k^n]]]; s]; Table[row[n], {n, 2, 12}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
-
def f(n)
return 1 if n < 2
(1..n).inject(:*)
end
def A(n)
m = f(n)
ary = []
(2..n).each{|i|
j = i ** n
ary << m % j
break if m <= j
}
ary
end
def A340810(n)
(2..n).map{|i| A(i)}.flatten
end
p A340810(12)
A228448
a(n) = floor(n!/3^n).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 2, 6, 18, 61, 225, 901, 3905, 18226, 91134, 486048, 2754274, 16525645, 104662422, 697749481, 4884246371, 35817806721, 274603184861, 2196825478892, 18306878990770, 158659617920008, 1427936561280078, 13327407905280733, 128831609751047086
Offset: 0
-
Table[Floor[n!/3^n],{n,0,30}] (* Harvey P. Dale, May 24 2018 *)
-
import math
for n in range(99): print(math.factorial(n)//(3**n), end=', ')
Showing 1-3 of 3 results.