A212309
a(n) = n! mod 3^n.
Original entry on oeis.org
0, 1, 2, 6, 24, 120, 720, 666, 954, 8586, 26811, 58725, 173259, 1189485, 3898206, 1077462, 17239392, 34789338, 238787595, 275338926, 2019994119, 578463687, 2265847911, 52114501953, 121029900948, 201452158890, 1848601693368, 4158660811014, 2058540433587, 36820880119062
Offset: 0
-
Table[Mod[n!,3^n],{n,0,30}] (* Harvey P. Dale, Apr 01 2018 *)
-
a(n) = n! % 3^n; \\ Michel Marcus, Jan 22 2021
-
import math
print([math.factorial(n)%(3**n) for n in range(99)])
A340810
Triangle T(n,k), n>=2, 2 <= k <= A214046(n), read by rows, where T(n,k) = n! mod k^n.
Original entry on oeis.org
2, 6, 8, 24, 24, 120, 16, 720, 48, 666, 5040, 128, 954, 40320, 384, 8586, 100736, 362880, 768, 26811, 483072, 3628800, 1280, 58725, 2168064, 39916800, 3072, 173259, 9239552, 234860975, 479001600
Offset: 2
n\k | 2 3 4 5 6
-----+---------------------------------------------
2 | 2;
3 | 6;
4 | 8, 24;
5 | 24, 120;
6 | 16, 720;
7 | 48, 666, 5040;
8 | 128, 954, 40320;
9 | 384, 8586, 100736, 362880;
10 | 768, 26811, 483072, 3628800;
11 | 1280, 58725, 2168064, 39916800;
12 | 3072, 173259, 9239552, 234860975, 479001600;
-
row[n_] := Module[{k = 1, s = {}}, While[k^n <= n!, k++; AppendTo[s, Mod[n!, k^n]]]; s]; Table[row[n], {n, 2, 12}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
-
def f(n)
return 1 if n < 2
(1..n).inject(:*)
end
def A(n)
m = f(n)
ary = []
(2..n).each{|i|
j = i ** n
ary << m % j
break if m <= j
}
ary
end
def A340810(n)
(2..n).map{|i| A(i)}.flatten
end
p A340810(12)
A228449
a(n) = floor(n! / 4^n).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 9, 28, 92, 324, 1217, 4871, 20703, 93166, 442542, 2212711, 11616735, 63892044, 367379253, 2204275523, 13776722023, 89548693155, 604453678799, 4231175751597, 30676024199079, 230070181493096, 1783043906571497, 14264351252571976
Offset: 0
-
Table[Floor[n!/4^n],{n,0,40}] (* Harvey P. Dale, Jun 07 2014 *)
-
import math
for n in range(99): print(math.factorial(n)//(4**n), end=', ')
Showing 1-3 of 3 results.