cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212383 Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 3).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 37, 83, 199, 512, 1343, 3488, 9011, 23488, 62094, 165738, 444160, 1193146, 3216436, 8709766, 23683846, 64611879, 176730460, 484593740, 1332018207, 3669981318, 10133197561, 28032766982, 77688769031, 215665451243, 599644845226
Offset: 0

Views

Author

Alois P. Heinz, May 12 2012

Keywords

Comments

Lengths of descents are unrestricted.

Examples

			a(0) = 1: the empty path.
a(1) = 1: UD.
a(2) = 1: UDUD.
a(3) = 1: UDUDUD.
a(4) = 2: UDUDUDUD, UUUUDDDD.
a(5) = 6: UDUDUDUDUD, UDUUUUDDDD, UUUUDDDDUD, UUUUDDDUDD, UUUUDDUDDD, UUUUDUDDDD.
		

Crossrefs

Column k=3 of A212382.

Programs

  • Maple
    b:= proc(x, y, u) option remember;
          `if`(x<0 or y b(n$2, true):
    seq(a(n), n=0..40);
    # second Maple program
    a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^3), A), x, n+1), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    For[A = 1; n = 1, n <= 32, n++, A = (1-(x*A)^3)/(1-x-(x*A)^3) + O[x]^n]; CoefficientList[A, x] (* Jean-François Alcover, Apr 23 2016 *)
  • Maxima
    a(n):=sum(binomial(2*k-n-1,n-k)*binomial(n+1,3*k-2*n),k,0,n)/(n+1); /* Vladimir Kruchinin, Mar 05 2016 */
    
  • PARI
    a(n) = sum(k=0, n, binomial(2*k-n-1,n-k)*binomial(n+1,3*k-2*n)) /(n+1); \\ Michel Marcus, Mar 05 2016
    
  • PARI
    x='x+O('x^66);  Vec( serreverse( x/(1+x/(1-x^3)) ) / x ) \\ Joerg Arndt, Apr 23 2016

Formula

G.f. satisfies: A(x) = 1+x*A(x)/(1-(x*A(x))^3).
Recurrence: 27*(n-2)*n*(n+1)*(7315*n^5 - 103740*n^4 + 581321*n^3 - 1621860*n^2 + 2283420*n - 1319472)*a(n) = 18*n*(43890*n^7 - 732165*n^6 + 5094566*n^5 - 19117342*n^4 + 41486098*n^3 - 51106565*n^2 + 31574358*n - 6550776)*a(n-1) - 6*(197505*n^8 - 3591000*n^7 + 27966247*n^6 - 121632688*n^5 + 321488424*n^4 - 523324472*n^3 + 503478200*n^2 - 254789904*n + 49688640)*a(n-2) + 3*(395010*n^8 - 7774515*n^7 + 66666259*n^6 - 325204119*n^5 + 983833331*n^4 - 1877089982*n^3 + 2181330624*n^2 - 1388626960*n + 361350720)*a(n-3) + 3*(n-4)*(460845*n^7 - 7918155*n^6 + 56450863*n^5 - 217083355*n^4 + 489279096*n^3 - 653902178*n^2 + 488647076*n - 160632720)*a(n-4) - 3*(n-5)*(n-4)*(43890*n^6 - 600495*n^5 + 3490586*n^4 - 10880637*n^3 + 18337012*n^2 - 14599068*n + 3573072)*a(n-5) - 23*(n-6)*(n-5)*(n-4)*(7315*n^5 - 67165*n^4 + 239511*n^3 - 427187*n^2 + 405278*n - 173016)*a(n-6). - Vaclav Kotesovec, Aug 18 2013
a(n) ~ c*d^n/n^(3/2), where d = 2.917020449755... is the root of the equation 23 + 18*d - 189*d^2 - 162*d^3 + 162*d^4 - 108*d^5 + 27*d^6 = 0 and c = 0.415028509255451481644332... - Vaclav Kotesovec, Aug 18 2013
a(n) = Sum_{k=0..n} binomial(2*k-n-1,n-k)*binomial(n+1,3*k-2*n)/(n+1). - Vladimir Kruchinin, Mar 05 2016
G.f. is series_reversion(B(x))/x where B(x) = x/(1 + x + x^4 + x^7 + x^10 + ...) = x/(1+x/(1-x^3)); for Dyck paths with allowed ascent lengths {u_1, u_2, ...} use B(x) = x/( 1 + sum(k>=1, x^{u_k} ) ). - Joerg Arndt, Apr 23 2016