cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A212382 Number A(n,k) of Dyck n-paths all of whose ascents have lengths equal to 1+k*m (m>=0); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 14, 1, 1, 1, 1, 1, 5, 42, 1, 1, 1, 1, 1, 2, 12, 132, 1, 1, 1, 1, 1, 1, 6, 30, 429, 1, 1, 1, 1, 1, 1, 2, 16, 79, 1430, 1, 1, 1, 1, 1, 1, 1, 7, 37, 213, 4862, 1, 1, 1, 1, 1, 1, 1, 2, 22, 83, 584, 16796, 1
Offset: 0

Views

Author

Alois P. Heinz, May 12 2012

Keywords

Comments

Lengths of descents are unrestricted.
For p>0 is column p asymptotic to a(n) ~ s^2 / (n^(3/2) * r^(n-1/2) * sqrt(2*Pi*p*(s-1)*(1+s/(1+p*(s-1))))), where r and s are real roots (0 < r < 1) of the system of equations r = p*(s-1)^2 / (s*(1-p+p*s)), (r*s)^p = (s-1-r*s)/(s-1). - Vaclav Kotesovec, Jul 16 2014

Examples

			A(0,k) = 1: the empty path.
A(3,0) = 1: UDUDUD.
A(3,1) = 5: UDUDUD, UDUUDD, UUDDUD, UUDUDD, UUUDDD.
A(3,2) = 2: UDUDUD, UUUDDD.
A(5,3) = 6: UDUDUDUDUD, UDUUUUDDDD, UUUUDDDDUD, UUUUDDDUDD, UUUUDDUDDD, UUUUDUDDDD.
Square array A(n,k) begins:
  1,   1,  1,  1,  1,  1,  1,  1, ...
  1,   1,  1,  1,  1,  1,  1,  1, ...
  1,   2,  1,  1,  1,  1,  1,  1, ...
  1,   5,  2,  1,  1,  1,  1,  1, ...
  1,  14,  5,  2,  1,  1,  1,  1, ...
  1,  42, 12,  6,  2,  1,  1,  1, ...
  1, 132, 30, 16,  7,  2,  1,  1, ...
  1, 429, 79, 37, 22,  8,  2,  1, ...
		

Crossrefs

A(2n,n) gives A323229.

Programs

  • Maple
    b:= proc(x, y, k, u) option remember;
          `if`(x<0 or y `if`(k=0, 1, b(n, n, k, true)):
    seq(seq(A(n, d-n), n=0..d), d=0..15);
    # second Maple program
    A:= (n, k)-> `if`(k=0, 1, coeff(series(RootOf(
                   A||k=1+x*A||k/(1-(x*A||k)^k), A||k), x, n+1), x, n)):
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    b[x_, y_, k_, u_] := b[x, y, k, u] = If[x<0 || yJean-François Alcover, Jan 15 2014, translated from first Maple program *)

Formula

G.f. of column k>0 satisfies: A_k(x) = 1+x*A_k(x)/(1-(x*A_k(x))^k), g.f. of column k=0: A_0(x) = 1/(1-x).
G.f. of column k>0 is series_reversion(B(x))/x where B(x) = x/(1 + x + x^(k+1) + x^(2*k+1) + x^(3*k+1) + ... ) = x/(1+x/(1-x^k)); for Dyck paths with allowed ascent lengths {u_1, u_2, ...} use B(x) = x/( 1 + sum(k>=1, x^{u_k} ) ). - Joerg Arndt, Apr 23 2016

A365244 G.f. satisfies A(x) = 1 + x*A(x)/(1 - x^2*A(x)^3).

Original entry on oeis.org

1, 1, 1, 2, 6, 17, 48, 144, 449, 1422, 4568, 14893, 49139, 163665, 549570, 1858754, 6326343, 21651064, 74462327, 257219221, 892047965, 3104749126, 10841192392, 37967942203, 133333407639, 469405472729, 1656383420850, 5857371543403, 20754268304707
Offset: 0

Views

Author

Seiichi Manyama, Aug 28 2023

Keywords

Crossrefs

Programs

  • Maple
    A365244 := proc(n)
        add( binomial(n-k-1,k)*binomial(n+k+1,n-2*k)/(n+k+1),k=0..floor(n/2)) ;
    end proc:
    seq(A365244(n),n=0..80); # R. J. Mathar, Aug 29 2023
  • Mathematica
    nmax = 28; A[_] = 1;
    Do[A[x_] = 1 + x*A[x]/(1 - x^2*A[x]^3) + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 25 2023 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k-1, k)*binomial(n+k+1, n-2*k)/(n+k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1,k) * binomial(n+k+1,n-2*k)/(n+k+1).
D-finite with recurrence -9*n*(3*n-5) *(3*n+2) *(15657757169*n -38967750523)*a(n) +3*(1246945698477*n^4 -4744568003544*n^3 +3294337649527*n^2 +2214578323972*n -1078893934272) *a(n-1) +6*(98125454565*n^4 -4049050969593*n^3 +21710764341344*n^2 -39026642938410*n +22772957131188) *a(n-2) +6*(1426531749264*n^4 -6603349282173*n^3 -4098111856085*n^2 +51689999346882*n -56245738276010) *a(n-3) +6*(2322713957130*n^4 -32736762801117*n^3 +166244031312630*n^2 -356896536324983*n +268070043432100) *a(n-4) -6*(n-5) *(2*n-9) *(613164767527*n^2 -4657829502565*n +8148618486058) *a(n-5) +2*(n-6) *(2*n-11) *(271184324539*n^2 -2272760427224*n +4256723647917) *a(n-6) -4*(6162243349*n -17166617798) *(2*n-13)*(n-6) *(n-7)*a(n-7)=0. - R. J. Mathar, Aug 29 2023

A365245 G.f. satisfies A(x) = 1 + x*A(x)/(1 - x^4*A(x)^3).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 6, 16, 36, 72, 139, 283, 631, 1487, 3510, 8086, 18240, 41004, 93364, 216370, 507353, 1193113, 2799681, 6556243, 15368798, 36163695, 85483537, 202768647, 481870474, 1146143965, 2728316757, 6502751833, 15525113876, 37131739582
Offset: 0

Views

Author

Seiichi Manyama, Aug 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k-1, k)*binomial(n-k+1, n-4*k)/(n-k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k-1,k) * binomial(n-k+1,n-4*k)/(n-k+1).

A365757 G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^3*A(x)^5).

Original entry on oeis.org

1, 1, 1, 1, 2, 8, 29, 86, 229, 619, 1836, 5846, 18802, 59356, 185187, 581476, 1855412, 5997965, 19491730, 63395718, 206433172, 674452128, 2213463944, 7293253791, 24098638133, 79791002807, 264698873350, 879945619711, 2931486913728, 9785457123420, 32721317536787
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(n+2*k+1, n-3*k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,k) * binomial(n+2*k+1,n-3*k) / (n+2*k+1).

A365756 G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^3*A(x)^4).

Original entry on oeis.org

1, 1, 1, 1, 2, 7, 22, 58, 142, 363, 1014, 2966, 8645, 24824, 71189, 206742, 609159, 1809493, 5388804, 16073002, 48092377, 144532884, 436168716, 1320372837, 4006489208, 12183544414, 37132838866, 113426618425, 347191793705, 1064688271730, 3270387354434
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(n+k+1, n-3*k)/(n+k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,k) * binomial(n+k+1,n-3*k) / (n+k+1).
Showing 1-5 of 5 results.