A101785
G.f. satisfies: A(x) = 1 + x*A(x)/(1 - x^2*A(x)^2).
Original entry on oeis.org
1, 1, 1, 2, 5, 12, 30, 79, 213, 584, 1628, 4600, 13138, 37871, 110043, 321978, 947813, 2805104, 8341608, 24912004, 74686460, 224694128, 678143656, 2052640752, 6229616730, 18952875247, 57792705415, 176596786934, 540679385663
Offset: 0
Generated from Fibonacci polynomials (A011973) and
coefficients of odd powers of 1/(1-x):
a(1) = 1*1/1
a(2) = 1*1/1 + 0*1/3
a(3) = 1*1/1 + 1*3/3
a(4) = 1*1/1 + 2*6/3 + 0*1/5
a(5) = 1*1/1 + 3*10/3 + 1*5/5
a(6) = 1*1/1 + 4*15/3 + 3*15/5 + 0*1/7
a(7) = 1*1/1 + 5*21/3 + 6*35/5 + 1*7/7
a(8) = 1*1/1 + 6*28/3 + 10*70/5 + 4*28/7 + 0*1/9
This process is equivalent to the formula:
a(n) = Sum_{k=0..[(n-1)/2]} C(n-k-1,k)*C(n,2*k)/(2*k+1).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Colin Defant, Motzkin intervals and valid hook configurations, arXiv preprint arXiv:1904.10451 [math.CO], 2019.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Vaclav Kotesovec, Asymptotic of subsequences of A212382
- Helmut Prodinger, Partial Dyck path interpretation for three sequences in the Encyclopedia of Integer Sequences, arXiv:2408.01290 [math.CO], 2024.
-
[n eq 0 select 1 else (&+[Binomial(n-k-1,k)*Binomial(n, 2*k)/(2*k+1): k in [0..Floor((n-1)/2)]]): n in [0..30]]; // G. C. Greubel, May 03 2019
-
Flatten[{1,Table[Sum[Binomial[n-k-1,k]*Binomial[n,2*k]/(2*k+1),{k,0,Floor[(n-1)/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 17 2013 *)
CoefficientList[InverseSeries[Series[x*(1-x^2)/(1+x-x^2), {x, 0, 30}], x]/x, x] (* G. C. Greubel, May 03 2019 *)
-
{a(n)=if(n==0,1,sum(k=0,(n-1)\2,binomial(n-k-1,k)*binomial(n,2*k)/(2*k+1)))}
for(n=1, 40, print1(a(n), ", "))
-
N=66; Vec(serreverse(x/(1+sum(k=1,N,x^(2*k-1)))+O(x^N))/x) /* Joerg Arndt, Aug 19 2012 */
-
[1]+[sum(binomial(n-k-1, k)*binomial(n, 2*k)/(2*k+1) for k in (0..floor((n-1)/2))) for n in (1..30)] # G. C. Greubel, May 03 2019
A212385
Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 5).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 464, 943, 1873, 3914, 9101, 23298, 61915, 162283, 409888, 996456, 2360486, 5555333, 13244114, 32357022, 80958851, 205389082, 522000262, 1317987172, 3297123652, 8190326857, 20302864970, 50482613327, 126318440989
Offset: 0
a(0) = 1: the empty path.
a(1) = 1: UD.
a(6) = 2: UDUDUDUDUDUD, UUUUUUDDDDDD.
a(7) = 8: UDUDUDUDUDUDUD, UDUUUUUUDDDDDD, UUUUUUDDDDDDUD, UUUUUUDDDDDUDD, UUUUUUDDDDUDDD, UUUUUUDDDUDDDD, UUUUUUDDUDDDDD, UUUUUUDUDDDDDD.
-
b:= proc(x, y, u) option remember;
`if`(x<0 or y b(n$2, true):
seq(a(n), n=0..40);
# second Maple program
a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^5), A), x, n+1), x, n):
seq(a(n), n=0..40);
-
b[x_, y_, u_] := b[x, y, u] = If[x<0 || yJean-François Alcover, Feb 05 2015, after Alois P. Heinz *)
-
a(n):=sum(binomial(4*k-3*n-1, n-k)*binomial(n+1, 5*k-4*n), k, 0, n)/(n+1); /* Vladimir Kruchinin, Mar 05 2016 */
-
a(n) = sum(k=0, n, binomial(4*k-3*n-1,n-k)*binomial(n+1,5*k-4*n))/(n+1); \\ Michel Marcus, Mar 05 2016
A212383
Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 3).
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 16, 37, 83, 199, 512, 1343, 3488, 9011, 23488, 62094, 165738, 444160, 1193146, 3216436, 8709766, 23683846, 64611879, 176730460, 484593740, 1332018207, 3669981318, 10133197561, 28032766982, 77688769031, 215665451243, 599644845226
Offset: 0
a(0) = 1: the empty path.
a(1) = 1: UD.
a(2) = 1: UDUD.
a(3) = 1: UDUDUD.
a(4) = 2: UDUDUDUD, UUUUDDDD.
a(5) = 6: UDUDUDUDUD, UDUUUUDDDD, UUUUDDDDUD, UUUUDDDUDD, UUUUDDUDDD, UUUUDUDDDD.
-
b:= proc(x, y, u) option remember;
`if`(x<0 or y b(n$2, true):
seq(a(n), n=0..40);
# second Maple program
a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^3), A), x, n+1), x, n):
seq(a(n), n=0..40);
-
For[A = 1; n = 1, n <= 32, n++, A = (1-(x*A)^3)/(1-x-(x*A)^3) + O[x]^n]; CoefficientList[A, x] (* Jean-François Alcover, Apr 23 2016 *)
-
a(n):=sum(binomial(2*k-n-1,n-k)*binomial(n+1,3*k-2*n),k,0,n)/(n+1); /* Vladimir Kruchinin, Mar 05 2016 */
-
a(n) = sum(k=0, n, binomial(2*k-n-1,n-k)*binomial(n+1,3*k-2*n)) /(n+1); \\ Michel Marcus, Mar 05 2016
-
x='x+O('x^66); Vec( serreverse( x/(1+x/(1-x^3)) ) / x ) \\ Joerg Arndt, Apr 23 2016
A323229
a(n) = binomial(2*n, n+1) + 1.
Original entry on oeis.org
1, 2, 5, 16, 57, 211, 793, 3004, 11441, 43759, 167961, 646647, 2496145, 9657701, 37442161, 145422676, 565722721, 2203961431, 8597496601, 33578000611, 131282408401, 513791607421, 2012616400081, 7890371113951, 30957699535777, 121548660036301, 477551179875953
Offset: 0
-
[Binomial(2*n, n+1) + 1: n in [0..30]]; // G. C. Greubel, Dec 26 2021
-
aList := proc(len) local gf, ser; assume(Im(x) > 0);
gf := (1-3*x)/(2*(x-1)*x) + (I*(1-2*x))/(2*x*sqrt(4*x-1));
ser := series(gf, x, len+2):
seq(coeff(ser, x, n), n=0..len) end: aList(27);
-
Table[Binomial[2n, n+1] + 1, {n, 0, 26}]
-
[binomial(2*n, n+1) + 1 for n in (0..30)] # G. C. Greubel, Dec 26 2021
A212384
Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 4).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 7, 22, 57, 128, 268, 573, 1343, 3434, 9038, 23374, 58649, 144400, 355992, 892336, 2280020, 5892301, 15253305, 39347067, 101177783, 260255812, 671941182, 1743500452, 4542147622, 11858732144, 30983904244, 80982376879, 211831943129, 554905957520
Offset: 0
a(0) = 1: the empty path.
a(1) = 1: UD.
a(5) = 2: UDUDUDUDUD, UUUUUDDDDD.
a(6) = 7: UDUDUDUDUDUD, UDUUUUUDDDDD, UUUUUDDDDDUD, UUUUUDDDDUDD, UUUUUDDDUDDD, UUUUUDDUDDDD, UUUUUDUDDDDD.
-
b:= proc(x, y, u) option remember;
`if`(x<0 or y b(n$2, true):
seq(a(n), n=0..40);
# second Maple program:
a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^4), A), x, n+1), x, n):
seq(a(n), n=0..40);
-
a[n_] := Sum[Binomial[3k-2n-1, n-k]*Binomial[n+1, 4k-3n], {k, 0, n}]/(n+1);
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 03 2017, after Vladimir Kruchinin *)
-
a(n):=sum(binomial(3*k-2*n-1,n-k)*binomial(n+1,4*k-3*n),k,0,n)/(n+1); /* Vladimir Kruchinin, Mar 05 2016 */
-
a(n) = sum(k=0, n, binomial(3*k-2*n-1,n-k)*binomial(n+1,4*k-3*n))/(n+1); \\ Michel Marcus, Mar 05 2016
A212386
Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 6).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1718, 3454, 6646, 12841, 26589, 61813, 158918, 426401, 1134431, 2914055, 7171539, 16967745, 39008002, 88529366, 202057561, 471422866, 1133448790, 2799775102, 7026467132, 17684574313, 44192085565, 109081884957
Offset: 0
a(0) = 1: the empty path.
a(1) = 1: UD.
a(7) = 2: UDUDUDUDUDUDUD, UUUUUUUDDDDDDD.
a(8) = 9: UDUDUDUDUDUDUDUD, UDUUUUUUUDDDDDDD, UUUUUUUDDDDDDDUD, UUUUUUUDDDDDDUDD, UUUUUUUDDDDDUDDD, UUUUUUUDDDDUDDDD, UUUUUUUDDDUDDDDD, UUUUUUUDDUDDDDDD, UUUUUUUDUDDDDDDD.
-
b:= proc(x, y, u) option remember;
`if`(x<0 or y b(n$2, true):
seq(a(n), n=0..40);
# second Maple program
a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^6), A), x, n+1), x, n):
seq(a(n), n=0..40);
-
a[n_] := Sum[Binomial[5k-4n-1, n-k]*Binomial[n+1, 6k-5n], {k, 0, n}]/(n+1);
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 03 2017, after Vladimir Kruchinin *)
-
a(n):=sum(binomial(5*k-4*n-1, n-k)*binomial(n+1, 6*k-5*n), k, 0, n)/(n+1); /* Vladimir Kruchinin, Mar 05 2016 */
A212387
Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 7).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 10, 46, 166, 496, 1288, 3004, 6437, 12895, 24583, 45799, 87211, 180235, 420547, 1087220, 2941931, 7927664, 20705636, 51886966, 124660576, 288445186, 648173927, 1431655546, 3156274456, 7062245781, 16256654077, 38704049941, 94853117381
Offset: 0
a(0) = 1: the empty path.
a(1) = 1: UD.
a(8) = 2: UDUDUDUDUDUDUDUD, UUUUUUUUDDDDDDDD.
a(9) = 10: UDUDUDUDUDUDUDUDUD, UDUUUUUUUUDDDDDDDD, UUUUUUUUDDDDDDDDUD, UUUUUUUUDDDDDDDUDD, UUUUUUUUDDDDDDUDDD, UUUUUUUUDDDDDUDDDD, UUUUUUUUDDDDUDDDDD, UUUUUUUUDDDUDDDDDD, UUUUUUUUDDUDDDDDDD, UUUUUUUUDUDDDDDDDD.
-
b:= proc(x, y, u) option remember;
`if`(x<0 or y b(n$2, true):
seq(a(n), n=0..40);
# second Maple program
a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^7), A), x, n+1), x, n):
seq(a(n), n=0..40);
-
a[n_] := Sum[Binomial[6k-5n-1, n-k]*Binomial[n+1, 7k-6n], {k, 0, n}]/(n+1);
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 03 2017, after Vladimir Kruchinin *)
-
a(n):=sum(binomial(6*k-5*n-1, n-k)*binomial(n+1, 7*k-6*n), k, 0, n)/(n+1); /* Vladimir Kruchinin, Mar 05 2016 */
A212388
Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 8).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 11, 56, 221, 716, 2003, 5006, 11441, 24312, 48648, 92721, 170811, 311886, 589590, 1220979, 2864973, 7450852, 20309628, 55305706, 146505451, 373452808, 913836082, 2150455648, 4887179761, 10794337952, 23375638064, 50219351232
Offset: 0
a(0) = 1: the empty path.
a(1) = 1: UD.
a(9) = 2: UDUDUDUDUDUDUDUDUD, UUUUUUUUUDDDDDDDDD.
a(10) = 11: UDUDUDUDUDUDUDUDUDUD, UDUUUUUUUUUDDDDDDDDD, UUUUUUUUUDDDDDDDDDUD, UUUUUUUUUDDDDDDDDUDD, UUUUUUUUUDDDDDDDUDDD, UUUUUUUUUDDDDDDUDDDD, UUUUUUUUUDDDDDUDDDDD, UUUUUUUUUDDDDUDDDDDD, UUUUUUUUUDDDUDDDDDDD, UUUUUUUUUDDUDDDDDDDD, UUUUUUUUUDUDDDDDDDDD.
-
b:= proc(x, y, u) option remember;
`if`(x<0 or y b(n$2, true):
seq(a(n), n=0..40);
# second Maple program
a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^8), A), x, n+1), x, n):
seq(a(n), n=0..40);
A212389
Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 9).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 12, 67, 287, 1002, 3004, 8009, 19449, 43759, 92380, 184787, 353137, 650497, 1170632, 2110021, 3977161, 8271836, 19536661, 51111062, 140210129, 385123916, 1032218316, 2670065961, 6645249777, 15922990909, 36823807747, 82485177457
Offset: 0
a(0) = 1: the empty path.
a(1) = 1: UD.
a(10) = 2: UDUDUDUDUDUDUDUDUDUD, UUUUUUUUUUDDDDDDDDDD.
a(11) = 12: UDUDUDUDUDUDUDUDUDUDUD, UDUUUUUUUUUUDDDDDDDDDD, UUUUUUUUUUDDDDDDDDDDUD, UUUUUUUUUUDDDDDDDDDUDD, UUUUUUUUUUDDDDDDDDUDDD, UUUUUUUUUUDDDDDDDUDDDD, UUUUUUUUUUDDDDDDUDDDDD, UUUUUUUUUUDDDDDUDDDDDD, UUUUUUUUUUDDDDUDDDDDDD, UUUUUUUUUUDDDUDDDDDDDD, UUUUUUUUUUDDUDDDDDDDDD, UUUUUUUUUUDUDDDDDDDDDD.
-
b:= proc(x, y, u) option remember;
`if`(x<0 or y b(n$2, true):
seq(a(n), n=0..40);
# second Maple program:
a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^9), A), x, n+1), x, n):
seq(a(n), n=0..40);
A212390
Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 10).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 13, 79, 365, 1366, 4369, 12377, 31825, 75583, 167961, 352718, 705466, 1352585, 2501205, 4495351, 7956391, 14221936, 26802361, 56058016, 133316626, 350785307, 967683665, 2677259721, 7246005881, 18977267621, 47931495649
Offset: 0
a(0) = 1: the empty path.
a(1) = 1: UD.
a(11) = 2: UDUDUDUDUDUDUDUDUDUDUD, UUUUUUUUUUUDDDDDDDDDDD.
a(12) = 13: UDUDUDUDUDUDUDUDUDUDUDUD, UDUUUUUUUUUUUDDDDDDDDDDD, UUUUUUUUUUUDDDDDDDDDDDUD, UUUUUUUUUUUDDDDDDDDDDUDD, UUUUUUUUUUUDDDDDDDDDUDDD, UUUUUUUUUUUDDDDDDDDUDDDD, UUUUUUUUUUUDDDDDDDUDDDDD, UUUUUUUUUUUDDDDDDUDDDDDD, UUUUUUUUUUUDDDDDUDDDDDDD, UUUUUUUUUUUDDDDUDDDDDDDD, UUUUUUUUUUUDDDUDDDDDDDDD, UUUUUUUUUUUDDUDDDDDDDDDD, UUUUUUUUUUUDUDDDDDDDDDDD.
-
b:= proc(x, y, u) option remember;
`if`(x<0 or y b(n$2, true):
seq(a(n), n=0..40);
# second Maple program:
a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^10), A), x, n+1), x, n):
seq(a(n), n=0..40);
Showing 1-10 of 10 results.
Comments