cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A212382 Number A(n,k) of Dyck n-paths all of whose ascents have lengths equal to 1+k*m (m>=0); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 14, 1, 1, 1, 1, 1, 5, 42, 1, 1, 1, 1, 1, 2, 12, 132, 1, 1, 1, 1, 1, 1, 6, 30, 429, 1, 1, 1, 1, 1, 1, 2, 16, 79, 1430, 1, 1, 1, 1, 1, 1, 1, 7, 37, 213, 4862, 1, 1, 1, 1, 1, 1, 1, 2, 22, 83, 584, 16796, 1
Offset: 0

Views

Author

Alois P. Heinz, May 12 2012

Keywords

Comments

Lengths of descents are unrestricted.
For p>0 is column p asymptotic to a(n) ~ s^2 / (n^(3/2) * r^(n-1/2) * sqrt(2*Pi*p*(s-1)*(1+s/(1+p*(s-1))))), where r and s are real roots (0 < r < 1) of the system of equations r = p*(s-1)^2 / (s*(1-p+p*s)), (r*s)^p = (s-1-r*s)/(s-1). - Vaclav Kotesovec, Jul 16 2014

Examples

			A(0,k) = 1: the empty path.
A(3,0) = 1: UDUDUD.
A(3,1) = 5: UDUDUD, UDUUDD, UUDDUD, UUDUDD, UUUDDD.
A(3,2) = 2: UDUDUD, UUUDDD.
A(5,3) = 6: UDUDUDUDUD, UDUUUUDDDD, UUUUDDDDUD, UUUUDDDUDD, UUUUDDUDDD, UUUUDUDDDD.
Square array A(n,k) begins:
  1,   1,  1,  1,  1,  1,  1,  1, ...
  1,   1,  1,  1,  1,  1,  1,  1, ...
  1,   2,  1,  1,  1,  1,  1,  1, ...
  1,   5,  2,  1,  1,  1,  1,  1, ...
  1,  14,  5,  2,  1,  1,  1,  1, ...
  1,  42, 12,  6,  2,  1,  1,  1, ...
  1, 132, 30, 16,  7,  2,  1,  1, ...
  1, 429, 79, 37, 22,  8,  2,  1, ...
		

Crossrefs

A(2n,n) gives A323229.

Programs

  • Maple
    b:= proc(x, y, k, u) option remember;
          `if`(x<0 or y `if`(k=0, 1, b(n, n, k, true)):
    seq(seq(A(n, d-n), n=0..d), d=0..15);
    # second Maple program
    A:= (n, k)-> `if`(k=0, 1, coeff(series(RootOf(
                   A||k=1+x*A||k/(1-(x*A||k)^k), A||k), x, n+1), x, n)):
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    b[x_, y_, k_, u_] := b[x, y, k, u] = If[x<0 || yJean-François Alcover, Jan 15 2014, translated from first Maple program *)

Formula

G.f. of column k>0 satisfies: A_k(x) = 1+x*A_k(x)/(1-(x*A_k(x))^k), g.f. of column k=0: A_0(x) = 1/(1-x).
G.f. of column k>0 is series_reversion(B(x))/x where B(x) = x/(1 + x + x^(k+1) + x^(2*k+1) + x^(3*k+1) + ... ) = x/(1+x/(1-x^k)); for Dyck paths with allowed ascent lengths {u_1, u_2, ...} use B(x) = x/( 1 + sum(k>=1, x^{u_k} ) ). - Joerg Arndt, Apr 23 2016

A226974 a(n) = Sum_{k=0..floor(n/3)} binomial(n,3*k)*binomial(4*k,k)/(3*k+1).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 25, 64, 169, 443, 1181, 3224, 8897, 24701, 69161, 195255, 554577, 1583109, 4541461, 13086574, 37856437, 109892403, 320034309, 934774902, 2737689189, 8037746691, 23652564261, 69749727716, 206091735797, 610061655665, 1808962146529
Offset: 0

Views

Author

Karol A. Penson, Jun 25 2013

Keywords

Crossrefs

Programs

  • Maple
    A226974 := proc(n)
        hypergeom([-n/3,-n/3+2/3,-n/3+1/3,1/4,1/2,3/4],[1/3,2/3,2/3,1,4/3],-256/27) ;
        simplify(%) ;
    end proc:
    seq(A226974(n),n=0..40) ; # R. J. Mathar, Jan 10 2023
  • Mathematica
    Table[Sum[Binomial[n,3*k]*Binomial[4*k,k]/(3*k+1), {k,0,Floor[n/3]}],{n,0,20}] (* Vaclav Kotesovec, Jun 28 2013 *)
  • Maxima
    a(n):=if n<0 then 0 else if n=0 then 1 else sum(sum(sum(a(l)*a(i)*a(j)*a(n-i-j-l-3),l,0,n-3-i-j),j,0,n-3-i),i,0,n-3)+1; /* Vladimir Kruchinin, May 17 2020 */
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n,3*k)*binomial(4*k,k)/(3*k+1)); \\ Michel Marcus, Sep 16 2021

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n,3*k)*A002293(k).
Representation in terms of special values of hypergeometric function of type 6F5: a(n) = hypergeom([1/4, 1/2, 3/4, -(1/3)*n, -(1/3)*n+2/3, -(1/3)*n+1/3], [1/3, 2/3, 2/3, 1, 4/3],-4^4/3^3), n>=0.
Recurrence: 27*n*(n+1)*(n-1)*a(n) = 162*n*(n-1)^2*a(n-1) - 81*(5*n^2-15*n+12)*(n-1)*a(n-2) + 4*(199*n^3 - 1098*n^2 + 2043*n - 1296)*a(n-3) - (n-3)*(1173*n^2 - 5097*n + 5584)*a(n-4) + 6*(n-4)*(n-3)*(155*n-401)*a(n-5) - 283*(n-5)*(n-4)*(n-3)*a(n-6). - Vaclav Kotesovec, Jun 28 2013
a(n) ~ (3+4^(1+1/3))^(n+3/2)/(8*3^(n+1)*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 28 2013
G.f. satisfies A(x)=1+x^3*A(x)^4+x/(1-x). - Vladimir Kruchinin, May 17 2020
From Peter Bala, Sep 15 2021: (Start)
O.g.f.: A(x) = (1/x)*series reversion( x*(1 - x^3)/(1 + x*(1 - x^3)) ).
The g.f. of the m-th binomial transform of this sequence is equal to (1/x)*series reversion( x*(1 - x^3)/(1 + (m + 1)*x*(1 - x^3)) ). The case m = -1 gives the sequence [1,0,0,1,0,0,4,0,0,22,0,0,140,...] - an aerated version of A002293. (End)

A226910 a(n) = Sum_{k=0..floor(n/5)} binomial(n,5*k)*binomial(6*k,k)/(5*k+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 259, 529, 1189, 3004, 8009, 21073, 53233, 129813, 312733, 763573, 1915251, 4914736, 12720841, 32800186, 83869501, 213261712, 542609237, 1388542312, 3579043987, 9273567337, 24075321925, 62475528190, 161969731985, 419914766965
Offset: 0

Views

Author

Karol A. Penson, Jun 22 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,5*k]*Binomial[6*k,k]/(5*k+1),{k,0,Floor[n/5]}],{n,0,20}] (* Vaclav Kotesovec, Jun 28 2013 *)
  • PARI
    a(n)=sum(k=0,n\5,binomial(n,5*k)*binomial(6*k,k)/(5*k+1)) \\ Charles R Greathouse IV, Jun 24 2013

Formula

Representation in terms of special values of generalized hypergeometric function of type 10F9: a(n) = hypergeom([1/6, 1/3, 1/2, 2/3, 5/6, -(1/5)*n, -(1/5)*n+4/5, -(1/5)*n+3/5, -(1/5)*n+2/5, 1/5-(1/5)*n], [1/5, 2/5, 2/5, 3/5, 3/5, 4/5, 4/5, 1, 6/5], -6^6/5^5), n>=0.
Recurrence: -49781*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*a(n-10) + 10*(n-8)*(n-7)*(n-6)*(n-5)*(26453*n - 123726)*a(n-9) - 15*(n-7)*(n-6)*(n-5)*(40479*n^2 - 351957*n + 782140)*a(n-8) + 120*(n-6)*(n-5)*(7013*n^3 - 87699*n^2 + 378278*n - 565577)*a(n-7) - 6*(n-5)*(148255*n^4 - 2435310*n^3 + 15491085*n^2 - 45173430*n + 50791476)*a(n-6) + 12*(69513*n^5 - 1361100*n^4 + 10838875*n^3 - 43818750*n^2 + 89776250*n - 74437500)*a(n-5) - 93750*(7*n^4 - 98*n^3 + 525*n^2 - 1274*n + 1180)*(n-3)*a(n-4) + 375000*(n-2)*(n^2-6*n+10)*(n-3)^2*a(n-3) - 46875*(n-2)*(n-1)*(3*n^2-15*n+20)*(n-3)*a(n-2) + 31250*(n-2)^2*(n-1)*n*(n-3)*a(n-1) - 3125*(n-2)*(n-1)*n*(n+1)*(n-3)*a(n) = 0. - Vaclav Kotesovec, Jun 28 2013
a(n) ~ (5+6^(1+1/5))^(n+3/2)/(5^(n+1)*6^(1+3/10)*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 28 2013
G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^5 * A(x)^6. - Ilya Gutkovskiy, Jul 25 2021
From Peter Bala, Sep 15 2021: (Start)
O.g.f.: A(x) = (1/x)*series reversion ( x*(1 - x^5)/(1 + x*(1 - x^5)) ).
The g.f. of the m-th binomial transform of this sequence is equal to (1/x)*series reversion ( x*(1 - x^5)/(1 + (m + 1)*x*(1 - x^5)) ). The case m = -1 gives the sequence [1, 0, 0, 0, 0, 1, 0, 0,0, 0, 6, 0, 0, 0, 0, 51, 0, 0, 0, 0, 506, ...] - an aerated version of A002295. (End)

A365734 G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^5*A(x)^2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 58, 94, 163, 306, 599, 1170, 2229, 4140, 7596, 14002, 26228, 49979, 96212, 185491, 356255, 681247, 1300680, 2488500, 4782037, 9231306, 17875306, 34656389, 67194497, 130263382, 252631688, 490513867, 953923030, 1858136173, 3624102244
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k-1, k)*binomial(n-3*k+1, n-5*k)/(n-3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k-1,k) * binomial(n-3*k+1,n-5*k) / (n-3*k+1).

A365735 G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^5*A(x)^3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 6, 16, 36, 71, 128, 223, 403, 796, 1706, 3775, 8252, 17485, 35986, 72988, 148594, 307833, 650947, 1395846, 3004732, 6443836, 13732127, 29134320, 61792707, 131525272, 281463507, 605273669, 1305373379, 2817407854, 6077804871, 13103021422
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k-1, k)*binomial(n-2*k+1, n-5*k)/(n-2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k-1,k) * binomial(n-2*k+1,n-5*k) / (n-2*k+1).

A365736 G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^5*A(x)^4).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 254, 478, 903, 1838, 4148, 10012, 24417, 58019, 132919, 295699, 649742, 1437719, 3247500, 7504925, 17607055, 41465646, 97197400, 226053017, 522505492, 1205674911, 2790322418, 6495170018, 15209566913, 35761582618
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k-1, k)*binomial(n-k+1, n-5*k)/(n-k+1));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k-1,k) * binomial(n-k+1,n-5*k) / (n-k+1).
Showing 1-6 of 6 results.