A346646
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(4*k,k) / (3*k + 1).
Original entry on oeis.org
1, 2, 7, 38, 257, 1935, 15505, 129519, 1115061, 9823160, 88121887, 802227794, 7392428009, 68819554003, 646276497617, 6114880542117, 58237420303109, 557850829527246, 5370956411708779, 51947475492561014, 504492516832543885, 4917564488572565160
Offset: 0
-
A346646 := proc(n)
hypergeom([-n,1/4,1/2,3/4],[2/3,1,4/3],-256/27) ;
simplify(%) ;
end proc:
seq(A346646(n),n=0..40) ; # R. J. Mathar, Jan 10 2023
-
Table[Sum[Binomial[n, k] Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 21}]
nmax = 21; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^2 A[x]^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 21; CoefficientList[Series[Sum[(Binomial[4 k, k]/(3 k + 1)) x^k/(1 - x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[HypergeometricPFQ[{1/4, 1/2, 3/4, -n}, {2/3, 1, 4/3}, -256/27], {n, 0, 21}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(4*k,k)/(3*k + 1)); \\ Michel Marcus, Jul 26 2021
A227035
a(n) = Sum_{k=0..floor(n/4)} binomial(n,4*k)*binomial(5*k,k)/(4*k+1).
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 16, 36, 76, 172, 436, 1156, 3006, 7606, 19202, 49466, 130156, 345356, 915196, 2421532, 6427001, 17163581, 46087911, 124133531, 334850208, 904691576, 2449891276, 6651540676, 18100561856, 49344295152, 134719523056, 368350942416, 1008680051756
Offset: 0
-
Table[Sum[Binomial[n,4*k]*Binomial[5*k,k]/(4*k+1),{k,0,Floor[n/4]}],{n,0,20}]
-
a(n)=sum(k=0,n\4,binomial(n,4*k)*binomial(5*k,k)/(4*k+1)) \\ Charles R Greathouse IV, Jun 28 2013
A364596
G.f. satisfies A(x) = 1/(1-x) + x^3*(1-x)*A(x)^4.
Original entry on oeis.org
1, 1, 1, 2, 4, 7, 15, 36, 82, 191, 471, 1166, 2884, 7267, 18523, 47349, 121821, 315781, 822165, 2148811, 5641035, 14864295, 39287907, 104154066, 276899112, 737984583, 1971375679, 5277570860, 14156881590, 38045460023, 102421374775, 276174537027, 745822179831
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-k, 2*k)*binomial(4*k, k)/(3*k+1));
A364591
G.f. satisfies A(x) = 1/(1-x) + x^4*A(x)^4.
Original entry on oeis.org
1, 1, 1, 1, 2, 5, 11, 21, 40, 85, 197, 457, 1028, 2289, 5193, 12069, 28338, 66445, 155563, 365701, 865815, 2061133, 4919431, 11758741, 28165412, 67657225, 162977081, 393445865, 951438682, 2304494349, 5591221729, 13588455861, 33075115578, 80616857525, 196742749155
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n-k, 3*k)*binomial(4*k, k)/(3*k+1));
A364589
G.f. satisfies A(x) = 1/(1-x) + x^3*A(x)^3.
Original entry on oeis.org
1, 1, 1, 2, 4, 7, 14, 31, 67, 146, 331, 760, 1749, 4072, 9583, 22673, 53929, 129055, 310328, 749152, 1815481, 4415313, 10771564, 26352955, 64644926, 158963191, 391767016, 967523138, 2394060433, 5934576763, 14735792889, 36647185192, 91274339014, 227645446307
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-k, 2*k)*binomial(3*k,k)/(2*k+1));
A369630
Expansion of (1/x) * Series_Reversion( x * (1/(1+x^3) - x) ).
Original entry on oeis.org
1, 1, 2, 6, 20, 70, 255, 960, 3707, 14598, 58395, 236626, 969275, 4007041, 16696822, 70053159, 295691622, 1254772103, 5349978803, 22907982780, 98466168572, 424713570017, 1837717336614, 7974744620620, 34698200181696, 151341512079231, 661590732178716
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1/(1+x^3)-x))/x)
-
a(n) = sum(k=0, n\3, binomial(2*n-3*k+1, k)*binomial(2*n-3*k,n-3*k))/(n+1);
A370837
Expansion of (1/x) * Series_Reversion( x/(x+1/(1+x^3)) ).
Original entry on oeis.org
1, 1, 1, 0, -3, -9, -15, -6, 57, 231, 501, 474, -1223, -7331, -19655, -27813, 19089, 248541, 819141, 1508316, 417165, -8314449, -34737603, -78646452, -71651147, 251348311, 1461221581, 3984339966, 5586567405, -5424531663, -59608307151, -196443394947
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1+x^3)))/x)
-
a(n) = sum(k=0, n\3, (-1)^k*binomial(n, 3*k)*binomial(4*k, k)/(3*k+1));
A364588
G.f. satisfies A(x) = 1/(1-x) + x^2*A(x)^4.
Original entry on oeis.org
1, 1, 2, 5, 15, 49, 170, 613, 2275, 8629, 33301, 130333, 516077, 2063685, 8321892, 33803161, 138181521, 568031297, 2346668400, 9737766513, 40569611691, 169632827345, 711611670532, 2994165070045, 12632782541053, 53433933353885, 226540298098019
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n+k, 3*k)*binomial(4*k,k)/(3*k+1));
Showing 1-8 of 8 results.
Comments