cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A212669 a(n) = 2/15 * (32*n^5 + 80*n^4 + 40*n^3 - 20*n^2 + 3*n).

Original entry on oeis.org

18, 340, 2022, 7400, 20602, 48060, 99022, 186064, 325602, 538404, 850102, 1291704, 1900106, 2718604, 3797406, 5194144, 6974386, 9212148, 11990406, 15401608, 19548186, 24543068, 30510190, 37585008, 45915010, 55660228, 66993750, 80102232, 95186410, 112461612
Offset: 1

Views

Author

Keywords

Comments

a(n) is the difference between numbers of nonnegative multiples of 2*n+1 with even and odd digit sum in base 2*n in interval [0, 64*n^6).

Crossrefs

Programs

  • PARI
    Vec(2*x*(9+116*x+126*x^2+4*x^3+x^4)/(1-x)^6 + O(x^50)) \\ Colin Barker, Dec 01 2015

Formula

a(n) = 2/(2*n+1)*Sum_{i=1..n} tan^6(Pi*i/(2*n+1)).
G.f.: 2*x*(9+116*x+126*x^2+4*x^3+x^4) / (1-x)^6. - Colin Barker, Dec 01 2015

A212670 a(n) = 1/15*(128*n^5 + 320*n^4 + 80*n^3 - 200*n^2 + 92*n - 15).

Original entry on oeis.org

27, 615, 3843, 14351, 40363, 94711, 195859, 368927, 646715, 1070727, 1692195, 2573103, 3787211, 5421079, 7575091, 10364479, 13920347, 18390695, 23941443, 30757455, 39043563, 49025591, 60951379, 75091807, 91741819, 111221447, 133876835, 160081263, 190236171
Offset: 1

Views

Author

Keywords

Comments

a(n) is the difference between numbers of nonnegative multiples of 2*n+1 with even and odd digit sum in base 2*n in interval [0, 128*n^7).

Crossrefs

Programs

  • Mathematica
    Table[(1/15) (8 n^2 - 4 n + 1) (16 n^3 + 48 n^2 + 32 n - 15), {n, 29}] (* Bruno Berselli, May 24 2012 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{27,615,3843,14351,40363,94711},30] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    Vec(x*(27+453*x+558*x^2-22*x^3+7*x^4+x^5)/(1-x)^6 + O(x^50)) \\ Colin Barker, Dec 01 2015

Formula

a(n) = 2/(2*n+1)*Sum_{i=1..n} tan^7(Pi*i/(2*n+1))*sin(2*Pi*i/(2*n+1)).
G.f.: x*(27+453*x+558*x^2-22*x^3+7*x^4+x^5)/(1-x)^6. [Bruno Berselli, May 24 2012]

A212705 a(n) is the difference between numbers of nonnegative multiples of 2*n+1 with even and odd digit sum in base 2*n in interval [0, (2*n)^8).

Original entry on oeis.org

54, 3220, 38794, 237832, 995710, 3256540, 8954258, 21645200, 47366982, 95758500, 181475866, 325939096, 559444366, 923676652, 1474657570, 2286163232, 3453646934, 5098701492, 7374096042, 10469422120, 14617383838
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2/(2*n+1)*sum{i=1..n}tan^8(pi*i/(2*n+1)).
a(n) = 2/315*n*(1088*n^6+3808*n^5+3920*n^4+280*n^3-868*n^2+322n-45).
G.f.: 2*x*(27+1394*x+7273*x^2+7308*x^3+1373*x^4+34*x^5-x^6)/(1-x)^8. [Bruno Berselli, May 24 2012]

A212706 a(n) is the difference between numbers of nonnegative multiples of 2*n+1 with even and odd digit sum in base 2*n in interval [0, (2*n)^9).

Original entry on oeis.org

81, 5825, 73745, 461313, 1951057, 6418369, 17712657, 42921473, 94087249, 190446273, 361259537, 649305089, 1115101521, 1841932225, 2941740049, 4561961985, 6893373521, 10179012289, 14724250641, 20908086785, 29195724113, 40152508353, 54459292177, 72929296897
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1+n/315*(4352*n^6+15232*n^5+12992*n^4-5600*n^3- 5152*n^2+5488*n-2112): n in [1..25]]; // Vincenzo Librandi, Dec 02 2015
  • Mathematica
    Table[1 + n/315 (4352 n^6 + 15232 n^5 + 12992 n^4 - 5600 n^3 - 5152 n^2 + 5488 n - 2112), {n, 30}] (* Vincenzo Librandi, Dec 02 2015 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{81,5825,73745,461313,1951057,6418369,17712657,42921473},30] (* Harvey P. Dale, Aug 05 2025 *)
  • PARI
    Vec(x*(81+5177*x+29413*x^2+29917*x^3+4883*x^4+171*x^5-9*x^6-x^7)/(1-x)^8 + O(x^40)) \\ Colin Barker, Dec 01 2015
    

Formula

a(n) = 2/(2*n+1) * Sum_{i=1..n} tan^9(Pi*i/(2*n+1)) * sin(2*Pi*i/(2*n+1)).
a(n) = 1+n/315*(4352*n^6 + 15232*n^5 + 12992*n^4 - 5600*n^3 - 5152*n^2 + 5488*n - 2112).
G.f.: x*(81+5177*x+29413*x^2+29917*x^3+4883*x^4+171*x^5-9*x^6-x^7) / (1-x)^8. - Colin Barker, Dec 01 2015

Extensions

Typo in data fixed by Colin Barker, Dec 01 2015

A212822 Triangle of coefficients of polynomials concerning Newman-like phenomenon of multiples of b+1 in even base b in interval [0,b^n) (see comment).

Original entry on oeis.org

1, 2, -1, 1, 3, -1, 2, 6, -8, 3, 2, 10, 10, -10, 3, 4, 20, 10, -50, 46, -15, 17, 119, 245, 35, -217, 161, -45, 34, 238, 406, -350, -644, 1372, -1056, 315, 62, 558, 1722, 1638, -1092, -1008, 1828, -1188, 315, 124, 1116, 3138, 1134, -5838, 1134, 9452, -14724, 10134, -2835
Offset: 2

Views

Author

Keywords

Comments

In 1969, D. J. Newman (see the reference) proved that difference between numbers of multiples of 3 with even and odd binary digit sums in interval [0,x] is always positive. This fact now is known as Newman phenomenon.
Consider difference between numbers of multiples of b+1 with even and odd digit sums in even base b in interval [0, b^n). It is a polynomial in b P_n(b) of degree n-1 and multiple of b, if n is even, and n-2, if n is odd, such that all polynomials Q_n(b):=A156769(n/2)*P_n(b)/b, if n is even, and Q_n(b):=A156769((n-1)/2)*P_n(b), if n is odd, presumably have integer coefficients and are of degree n-2. The sequence is triangle of coefficients of polynomials Q_n(b).
The r-th row contains r-1 entries.
Since, evidently, P_n(1)=1, then the row sums form sequence A156769 repeated.

Examples

			Triangle begins (r is the number of row or the number of polynomial; coefficients of b^k, k=r-2-i, i=0,1,..., r-2)
r/i.|..0......1......2.....3.....4......5......6.....7
======================================================
.2..|..1
.3..|..2.....-1
.4..|..1......3.....-1
.5..|..2......6.....-8.....3
.6..|..2.....10.....10...-10.....3
.7..|..4.....20.....10...-50....46....-15
.8..|.17....119....245....35..-217....161....-45
.9..|.34....238....406..-350..-644...1372..-1056....315
For example, if r=4, the polynomial
P_4(b)=b*(b^2+3*b-1)/A156769(4/2)=b/3*(b^2+3*b-1) (b==0 mod 2)
gives difference between multiples of b+1 with even and odd digit sums in  base b in interval [0, b^4). Note also that P_2(b)=b. Therefore, setting in the formula n=r=3, again for P_4(b) we have P_4(b)=b*C(b+1,2)-C(b,3)=b/3*(b^2+3*b-1).
		

Crossrefs

Programs

  • Mathematica
    A156769[n_] := Denominator[(2^(2*n-2)/Factorial[2*n-1])]; poly[1, b_] := 1; poly[2, b_] := b; poly[n_, b_] :=  poly[n, b] = If[OddQ[n], (-1)^((n - 1)/2) (FunctionExpand[Binomial[b - 1, n - 1]] - Sum[(-1)^(k/2) FunctionExpand[Binomial[b + 1, n - k - 1]] poly[k + 1, b], {k, 0, n - 2, 2}]), (-1)^((n - 2)/2) (FunctionExpand[Binomial[b, n - 1]] - Sum[(-1)^((k - 1)/2) FunctionExpand[Binomial[b + 1, n - k - 1]] poly[k + 1, b], {k, 1, n - 2, 2}])]; Table[If[EvenQ[z], Most[Reverse[CoefficientList[poly[z, b] A156769[z/2], b]]], Reverse[CoefficientList[poly[z, b] A156769[(z - 1)/2], b]]], {z, 2, 12}]

Formula

If n>=2 is even, then P_(n+1)(b) = (-1)^((n-2)/2)*(C(b+1,n)-C(b-1,n))-sum{i=2,4,...,n-2}(-1)^((n+i)/2)*C(b+1, n-i)*P_(i+1)(b), where P_n(b)=b*Q_n(b)/A156769(n/2);
if n>=3 is odd, then P_(n+1)(b) = (-1)^((n-1)/2)*(C(b,n)-b*C(b+1,n-1))+sum{i=3,5,...,n-2}(-1)^((n+i)/2)*C(b+1, n-i)*P_(i+1)(b), where
P_n(b) = Q_n(b)/A156769((n-1)/2).
P_n(b) = 2/(b+1)*Sum_{j=1..b/2}(tan(j*Pi/(b+1)))^n, if n is even, and
P_n(b) = 2/(b+1)*Sum_{j=1..b/2}(tan(j*Pi/(b+1)))^n*sin(j*Pi/(b+1)), if n is odd.
Showing 1-5 of 5 results.