A212846 Polylogarithm li(-n,-1/2) multiplied by (3^(n+1))/2.
1, -1, -1, 3, 15, -21, -441, -477, 19935, 101979, -1150281, -14838957, 60479055, 2328851979, 3529587879, -403992301437, -3333935426625, 72778393505979, 1413503392326039, -10851976875907917, -554279405351601105, -713848745428080021
Offset: 0
Keywords
Examples
a(5) = polylog(-5,-1/2)*3^6/2 = -21. E.g.f.: A(x) = 1 - x - x^2/2! + 3*x^3/3! + 15*x^4/4! - 21*x^5/5! + ... O.g.f.: G(x) = 1 - x - x^2 + 3*x^3 + 15*x^4 - 21*x^5 - 441*x^6 +... where G(x) = 1 - x/(1-3*x) + 2!*x^2/((1-3*x)*(1-6*x)) - 3!*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 4!*x^4/((1-3*x)*(1-6*x)*(1-9*x)*(1-12*x)) +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..455 (terms 0..100 from Stanislav Sykora)
- OEIS-Wiki, Eulerian polynomials
- S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), Stan's Library Vol. I, April 2006, updated March 2012. See Eq.(29).
- Eric W. Weisstein, MathWorld: Polylogarithm
Crossrefs
Programs
-
Maple
seq(add((-1)^(n-k)*combinat[eulerian1](n,k)*2^k,k=0..n),n=0..21); # Peter Luschny, Apr 21 2013
-
Mathematica
f[n_] := PolyLog[-n, -1/2] 3^(n + 1)/2; Array[f, 21] (* Robert G. Wilson v, May 28 2012 *) a[ n_] := If[ n < 0, 0, n! 3/2 SeriesCoefficient[ 1 / (1 + Exp[3 x] / 2), {x, 0, n}]]; (* Michael Somos, Aug 27 2018 *)
-
PARI
/* for this sequence, run limnpq(nmax,1,2) */ limnpq(nmax,p,q) = { f=vector(nmax+1);f[1]=q/(p+q);r=-p/(p+q); for (i=2,nmax+1,p1=i-1;bc=1;m=p1;s=0; for(j=1,i-1,p2=j-1;if (p2,bc=bc*m/p2;m=m-1;); s=s+bc*f[j];);f[i]=r*s;); fac=(p+q)/q; for(i=1,nmax+1,f[i]=f[i]*fac;fac=(p+q)*fac; write("outputfile",i-1," ",f[i]););}
-
PARI
x='x+O('x^66); Vec(serlaplace(3/(2+exp(3*x)))) \\ Joerg Arndt, Apr 21 2013
-
PARI
/* O.g.f.: */ {a(n)=polcoeff(sum(m=0, n, m!*(-x)^m/prod(k=1, m, 1-3*k*x+x*O(x^n))), n)} \\ Paul D. Hanna, May 30 2013
-
PARI
a(n) = sum(k=0, n, k!*(-1)^k*3^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022
Formula
General recurrence: s(n+1)=(-p/(p+q))*SUM(C(n+1,i)*s(i)), where i=0,1,2,...,n, C(n,m) are binomial coefficients, and the starting value is s(0)=SUM((-p/q)^k)=q/(p+q). For this sequence set p=1 and q=2.
From Peter Bala, Jun 24 2012: (Start)
E.g.f.: A(x) = 3/(2+exp(3*x)).
The compositional inverse (A(-x) - 1)^(-1) = x + x^2/2 + 3*x^3/3 + 5*x^4/4 + 11*x^5/5 + ... is the logarithmic generating function for A001045.
(End)
a(n+1) = -3*a(n) + 2*sum(k=0..n, binomial(n,k)*a(k)*a(n-k) ), with a(0) = 1. - Peter Bala, Mar 12 2013
G.f.: 1/Q(0), where Q(k)= 1 + x*(k+1)/(1 - x*(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
O.g.f.: Sum_{n>=0} n!*(-x)^n / Product_{k=0..n} (1-3*k*x). - Paul D. Hanna, May 30 2013
For n>0, a(n) = -A179929(n)/2. - Stanislav Sykora, May 15 2014
a(n) = Sum_{k=0..n} k! * (-1)^k * 3^(n-k) * Stirling2(n,k). - Seiichi Manyama, Mar 13 2022
a(n) ~ n! * (log(2) * cos(n*arctan(Pi/log(2))) - Pi * sin(n*arctan(Pi/log(2)))) * 3^(n+1) / (Pi^2 + log(2)^2)^(1 + n/2). - Vaclav Kotesovec, May 17 2022
Comments
=0, ((k^n)/(-p/q)^k) ) = s(n), multiplied by ((p+q)^(n+1))/q is an integer a(n). For this sequence set p=1 and q=2.