A212848 Least prime factor of n-th central trinomial coefficient (A002426).
1, 1, 3, 7, 19, 3, 3, 3, 3, 43, 7, 3, 113, 73, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 7, 17, 3, 719, 7, 3, 3, 3, 3, 967, 9539, 3, 17, 47, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19
Offset: 0
Examples
a(9) = 43 because A002426(9) = 3139 = 43 * 73.
Links
- Robert Israel, Table of n, a(n) for n = 0..729
Programs
-
Maple
A002426:= gfun:-rectoproc({(n+2)*a(n+2)-(2*n+3)*a(n+1)-3*(n+1)*a(n) = 0, a(0)=1, a(1)=1},a(n),remember): lpf:= proc(n) local F; F:= map(proc(t) if t[1]::integer then t[1] else NULL fi end proc, ifactors(n, easy)[2]); if nops(F) > 0 then min(F) else min(numtheory:-factorset(n)) fi end proc: lpf(1):= 1: map(lpf @ A002426, [$0..100]); # Robert Israel, Jun 20 2017
-
Mathematica
a = b = 1; t = Join[{a, b}, Table[c = ((2 n - 1) b + 3 (n - 1) a)/n; a = b; b = c; c, {n, 2, 100}]]; Table[FactorInteger[n][[1, 1]], {n, t}] (* T. D. Noe, May 30 2012 *)
-
PARI
a(n) = my(x=polcoeff((1 + x + x^2)^n, n)); if (x==1, 1, vecmin(factor(x)[,1])); \\ Michel Marcus, Jun 20 2017
Comments