A212855 T(n,k) = number of n X k arrays with rows being permutations of 0..k-1 and no column j greater than column j-1 in all rows (n, k >= 1).
1, 1, 1, 1, 3, 1, 1, 19, 7, 1, 1, 211, 163, 15, 1, 1, 3651, 8983, 1135, 31, 1, 1, 90921, 966751, 271375, 7291, 63, 1, 1, 3081513, 179781181, 158408751, 7225951, 45199, 127, 1, 1, 136407699, 53090086057, 191740223841, 21855093751, 182199871, 275563, 255, 1
Offset: 1
Examples
Some solutions for n=3 and k=4: 2 1 3 0 1 3 0 2 3 0 2 1 1 3 0 2 1 3 2 0 2 0 1 3 1 3 0 2 3 1 2 0 1 0 3 2 1 3 0 2 2 3 0 1 3 0 2 1 2 3 1 0 2 0 3 1 3 1 0 2 Table starts: 1 1 1 1 1 1 1 1 3 19 211 3651 90921 3081513 1 7 163 8983 966751 179781181 53090086057 1 15 1135 271375 158408751 191740223841 429966316953825 1 31 7291 7225951 21855093751 164481310134301 2675558106868421881 1 63 45199 182199871 2801736968751 128645361626874561 14895038886845467640193
Links
- Alois P. Heinz, Antidiagonals n = 1..45 (first 20 antidiagonals from R. H. Hardin)
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250. MR0469773 (57 #9554); see Eqs. (6) on p. 248 and (8) on p. 249 with t=0.
- Yifei Li and Sheila Sundaram, Homology of Segre products of Boolean and subspace lattices, arXiv:2408.08421 [math.CO], 2024. See p. 17.
- Wikipedia, Partition (number theory).
- Wikipedia, Multinomial theorem.
Crossrefs
Programs
-
Maple
A212855_row := proc(m,len) proc(n,m) sum(z^k/k!^m, k = 0..infinity); series(%^x, z=0, n+1): n!^m*coeff(%,z,n); [seq(coeff(%,x,k),k=0..n)] end; seq(add(abs(k), k=%(j,m)), j=1..len) end: for n from 1 to 6 do A212855_row(n,7) od; # Peter Luschny, May 26 2017 # second Maple program: T:= proc(n, k) option remember; `if`(k=0, 1, -add( binomial(k, j)^n*(-1)^j*T(n, k-j), j=1..k)) end: seq(seq(T(n, 1+d-n), n=1..d), d=1..10); # Alois P. Heinz, Apr 26 2020
-
Mathematica
rows = 9; row[m_, len_] := Module[{p, s0, s1, s2}, p = Function[{n, m0}, s0 = Sum[ z^k/k!^m0, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n+1}] // Normal; s2 = n!^m0*Coefficient[s1, z, n]; Table[Coefficient[s2, x, k], {k, 0, n}]]; Table[Sum[Abs[k], {k, p[j, m]}], {j, 1, len}]]; T = Table[row[n, rows+1], {n, 1, rows}]; Table[T[[n-k+1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)
Formula
Empirical recurrence for column k:
k=1: a(n) = 1*a(n-1).
k=2: a(n) = 3*a(n-1) - 2*a(n-2).
k=3: a(n) = 10*a(n-1) - 27*a(n-2) + 18*a(n-3).
k=4: a(n) = 47*a(n-1) - 718*a(n-2) + 4416*a(n-3) - 10656*a(n-4) + 6912*a(n-5).
k=5: a(n) = 246*a(n-1) - 20545*a(n-2) + 751800*a(n-3) - 12911500*a(n-4) + 100380000*a(n-5) - 304200000*a(n-6) + 216000000*a(n-7).
[All the "empirical" recurrences above are correct. See the comments above.]
From Benoit Jubin, May 29 2012: (Start)
T(n,1) = T(1,n) = 1.
T(n,2) = 2^n - 1 since the only n X 2 matrix with rows permutations of {0,1} which has a column rise is the one where all rows are [0,1].
(k!)^n*(1 - (k-1)/2^n) <= T(n,k) <= (k!)^n (the first inequality is (11) in the Abramson-Promislow reference, the second is trivial). (End)
For r >= 1, A(n, r) = Sum_{k=0..n} |[x^k] n!^r [z^n] S(r, z)^x| where S(r, z) = Sum_{k>=0} z^k/k!^r. - Peter Luschny, Feb 27 2018
From Petros Hadjicostas, Sep 09 2019: (Start)
Recurrence for column k: Sum_{s = 0..A070289(k)} (-1)^s * A325305(k,s) * T(n-s,k) = 0 for n >= A070289(k) + 1.
Recurrence for row n: T(n,k) = (-1)^(k-1) + Sum_{s = 1..k-1} T(n,s) * (-1)^(k-s-1) * binomial(k,s)^n for k >= 1.
(End)
Sum_{k>=1} T(n,k)*z^k/(k!)^n = 1/E_n(-z) -1 where E_n(z) = Sum_{k>=0} z^k/(k!)^n. - Geoffrey Critzer, Apr 28 2023
Comments