A212857 Number of 4 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
1, 1, 15, 1135, 271375, 158408751, 191740223841, 429966316953825, 1644839120884915215, 10079117505143103766735, 94135092186827772028779265, 1287215725538576868883610346465, 24929029117106417518788960414909025, 664978827664071363541997348802227351425
Offset: 0
Keywords
Examples
Some solutions for n=3: 1 2 0 1 0 2 1 0 2 2 1 0 2 0 1 2 1 0 1 0 2 2 1 0 1 0 2 0 2 1 0 2 1 2 1 0 1 0 2 2 1 0 1 2 0 2 1 0 1 0 2 0 1 2 2 1 0 2 1 0 1 2 0 2 1 0 0 1 2 2 1 0 2 1 0 1 0 2 2 1 0 2 1 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..144 (terms n=1..19 from R. H. Hardin)
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (8) on p. 249.
Crossrefs
Programs
-
Maple
A212857 := proc(n) sum(z^k/k!^4, k = 0..infinity); series(%^x, z=0, n+1): n!^4*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end: seq(A212857(n), n=1..13); # Peter Luschny, May 27 2017
-
Mathematica
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]]; a[n_] := T[4, n]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
Formula
a(n) = (-1)^(n-1) + Sum_{s = 1..n-1} a(s) * (-1)^(n-s-1) * binomial(n,s)^m for n >= 2 with a(1) = 1. Here m = 4. - Petros Hadjicostas, Sep 08 2019
a(n) = (n!)^4 * [x^n] 1 / (1 + Sum_{k>=1} (-x)^k / (k!)^4). (see Petros Hadjicostas's comment on Sep 08 2019) - Seiichi Manyama, Jul 18 2020
Extensions
a(0)=1 prepended by Seiichi Manyama, Jul 18 2020
Comments