cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213018 Largest possible right-truncatable base n semiprime, written in decimal notation.

Original entry on oeis.org

349859, 96614184696363331, 21453921664462866568480385, 5396625577204731352098054139, 1230847457959658263441326143300761, 95861957783594714393831931415189937897, 246968512564969427282294385793684699270364003, 2275670244821939317343219562642735197101789412250091, 452359410421075824795509870868069265597540337861667320077
Offset: 5

Views

Author

Hugo Pfoertner, Jun 26 2012

Keywords

Comments

For the definition of a right-truncatable semiprime, see A213017. The process of truncating at the right end of the digit string has to be applied to the base-n representation given in the examples. a(10) was found by S.S. Gupta. All other terms have been computed by Hermann Jurksch.

Examples

			a(5)=349859=42143414 in base 5 = 89*3931
4214341 in base 5 = 69971 = 11*6361
421434 in base 5 = 13994 = 2*6997
42143 in base 5 = 2798 = 2*1399
4214 in base 5 = 559 = 13*43
421 in base 5 = 111 = 3*37
42 in base 5 = 22 = 2*11
4 in base 5 = 4 = 2*2
a(6)=4223145115415551545111 in base 6
a(7)=644324264233631242462662622646 in base 7
a(8)=4267773725372537135533515117773 in base 8
a(9)=43741424882428682844851886888222774 in base 9
a(10)=95861957783594714393831931415189937897 in base 10
a(11)=4567476a2738a828994aa851a116aa886a95686a231 in base 11
a(12)=43a2971ba155719171a2b1b97777775b779a732b755572b7 in base 12
a(13)=9114448462c6c46b3c9937446466b43686a24668666732c4356 in base 13
		

Crossrefs

Programs

  • Python
    from sympy import factorint
    def fromdigits(t, b): return sum(b**i*di for i, di in enumerate(t[::-1]))
    def semiprime(n): return sum(factorint(n).values()) == 2
    def a(n):
        m, s = 0, [(i,) for i in range(n) if semiprime(fromdigits((i,), n))]
        while len(s) > 0:
            m = fromdigits(max(s), n)
            cands = set(t+(d,) for t in s for d in tuple(range(n)))
            s = [c for c in cands if semiprime(fromdigits(c, n))]
        return m
    print([a(n) for n in range(5, 8)]) # Michael S. Branicky, Aug 04 2022

A213019 Largest n-digit right-truncatable semiprime.

Original entry on oeis.org

9, 95, 959, 9599, 95999, 959999, 9599999, 95999987, 959999879, 9599998799, 95999987999, 959999879999, 9599998791827, 95999987918279, 959999879182793, 9599998791715333, 95999987917153339, 959999879171533399, 9599998791715333999, 95999987917153339993
Offset: 1

Views

Author

Hugo Pfoertner, Jun 27 2012

Keywords

Comments

For the definition of a right-truncatable semiprime, see A213017. The largest possible right-truncatable semiprime a(38) = A085733(56076) = 95861957783594714393831931415189937897, found by S.S. Gupta, is the last term of this sequence.

Examples

			a(1) = 9 = 3*3
a(2) = 95 = 5*19 and none of 96, 97, 98, 99 semiprime
a(3) = 959 = 7*137
a(4) = 9599 = 29*331
a(5) = 95999 = 17*5647
a(6) = 959999 = 643*1493
a(7) = 9599999 = 1019*9421
a(8) = 95999987 = 7349*13063, 9599998 = 2*4799999 and none of 95999988 ... 95999999 semiprime
		

Crossrefs

Showing 1-2 of 2 results.