cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213017 Largest possible number of digits in a base n right-truncatable semiprime.

Original entry on oeis.org

0, 0, 0, 8, 22, 30, 31, 35, 38, 43, 48, 51
Offset: 2

Views

Author

Hugo Pfoertner, Jun 07 2012

Keywords

Comments

Right-truncatable semiprimes are numbers, where the number itself and all numbers obtained by successively removing the rightmost digit are semiprimes. S. S. Gupta found the largest possible right-truncatable base 10 semiprime to be 95861957783594714393831931415189937897 (38 decimal digits). Digit counts for largest possible right-truncatable semiprimes in other bases, found by Hermann Jurksch, are given in this sequence.

Examples

			There are no right-truncatable semiprimes in bases 2,3 and 4 thus a(2)=a(3)=a(4)=0;
The examples give the smallest base n semiprimes of maximum digit count, found by H. Jurksch:
a(5)=8: 42143413
a(6)=22: 4223145115415551545111
a(7)=30: 644324264233631242462662622646
a(8)=31: 4267773725372537135533515117773
a(9)=35: 43741424882428682844851886888222774
a(10)=38: 93359393537779942973989331953313839313
a(11)=43: 4567476a2738a828994aa851a116aa886a95686a231
a(12)=48: 43a2971ba155719171a2b1b97777775b779a732b755572b7
a(13)=51: 9114448462c6c46b3c9937446466b43686a246686667324c6a2
		

Crossrefs

Programs

  • Python
    from sympy import factorint
    def fromdigits(t, b): return sum(b**i*di for i, di in enumerate(t[::-1]))
    def semiprime(n): return sum(factorint(n).values()) == 2
    def a(n):
        d, s = 0, [(i,) for i in range(n) if semiprime(fromdigits((i,), n))]
        while len(s) > 0:
            cands = set(t+(d,) for t in s for d in tuple(range(n)))
            d, s = d+1, [c for c in cands if semiprime(fromdigits(c, n))]
        return d
    print([a(n) for n in range(2, 8)]) # Michael S. Branicky, Aug 04 2022

A213019 Largest n-digit right-truncatable semiprime.

Original entry on oeis.org

9, 95, 959, 9599, 95999, 959999, 9599999, 95999987, 959999879, 9599998799, 95999987999, 959999879999, 9599998791827, 95999987918279, 959999879182793, 9599998791715333, 95999987917153339, 959999879171533399, 9599998791715333999, 95999987917153339993
Offset: 1

Views

Author

Hugo Pfoertner, Jun 27 2012

Keywords

Comments

For the definition of a right-truncatable semiprime, see A213017. The largest possible right-truncatable semiprime a(38) = A085733(56076) = 95861957783594714393831931415189937897, found by S.S. Gupta, is the last term of this sequence.

Examples

			a(1) = 9 = 3*3
a(2) = 95 = 5*19 and none of 96, 97, 98, 99 semiprime
a(3) = 959 = 7*137
a(4) = 9599 = 29*331
a(5) = 95999 = 17*5647
a(6) = 959999 = 643*1493
a(7) = 9599999 = 1019*9421
a(8) = 95999987 = 7349*13063, 9599998 = 2*4799999 and none of 95999988 ... 95999999 semiprime
		

Crossrefs

Showing 1-2 of 2 results.