cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213173 a(n) = 4^floor(n/2), Powers of 4 repeated.

Original entry on oeis.org

1, 1, 4, 4, 16, 16, 64, 64, 256, 256, 1024, 1024, 4096, 4096, 16384, 16384, 65536, 65536, 262144, 262144, 1048576, 1048576, 4194304, 4194304, 16777216, 16777216, 67108864, 67108864, 268435456, 268435456, 1073741824, 1073741824, 4294967296, 4294967296
Offset: 0

Views

Author

Philippe Deléham, Apr 14 2013

Keywords

Comments

1, followed by A056450. - Joerg Arndt, Sep 17 2013
Binomial transform of A084567.
Unsigned version of A164111.
Also, number of walks of length n on the star S_4 = K_1,4 starting at a specific vertex of degree 1. - Sean A. Irvine, Jun 03 2025

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 4}, {1, 1}, 40] (* T. D. Noe, Apr 17 2013 *)
    CoefficientList[Series[(1 + x)/(1 - 4*x^2), {x,0,50}], x] (* G. C. Greubel, Apr 30 2017 *)
    With[{p4=4^Range[0,30]},Riffle[p4,p4]] (* Harvey P. Dale, Mar 17 2022 *)
  • PARI
    a(n)=4^(n\2) \\ Charles R Greathouse IV, Oct 03 2016

Formula

O.g.f.: (1+x)/(1-4*x^2).
a(n) = A016116(n)^2.
a(n) = 4*a(n-2) with a(0) = a(1) = 1.
a(n) = a(n-1)*a(n-2)/a(n-3) = 4^A004526(n).
a(n) = sum(A152815(n,k)*3^k, 0<=k<=n). - Philippe Deléham, Apr 22 2013