A213173 a(n) = 4^floor(n/2), Powers of 4 repeated.
1, 1, 4, 4, 16, 16, 64, 64, 256, 256, 1024, 1024, 4096, 4096, 16384, 16384, 65536, 65536, 262144, 262144, 1048576, 1048576, 4194304, 4194304, 16777216, 16777216, 67108864, 67108864, 268435456, 268435456, 1073741824, 1073741824, 4294967296, 4294967296
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Sean A. Irvine, Walks on Graphs.
- Wikipedia, Star (graph theory)
- Index entries for linear recurrences with constant coefficients, signature (0,4).
Programs
-
Mathematica
LinearRecurrence[{0, 4}, {1, 1}, 40] (* T. D. Noe, Apr 17 2013 *) CoefficientList[Series[(1 + x)/(1 - 4*x^2), {x,0,50}], x] (* G. C. Greubel, Apr 30 2017 *) With[{p4=4^Range[0,30]},Riffle[p4,p4]] (* Harvey P. Dale, Mar 17 2022 *)
-
PARI
a(n)=4^(n\2) \\ Charles R Greathouse IV, Oct 03 2016
Formula
O.g.f.: (1+x)/(1-4*x^2).
a(n) = A016116(n)^2.
a(n) = 4*a(n-2) with a(0) = a(1) = 1.
a(n) = a(n-1)*a(n-2)/a(n-3) = 4^A004526(n).
a(n) = sum(A152815(n,k)*3^k, 0<=k<=n). - Philippe Deléham, Apr 22 2013
Comments