cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A213189 Triangular numbers which are leg of a Pythagorean triple with hypotenuse in A213188.

Original entry on oeis.org

6, 36, 91, 120, 210, 253, 300, 378, 528, 630, 1176, 2016, 2346, 3003, 3240, 3828, 4560, 4656, 4950, 5460, 6105, 6903, 7140, 7260, 8778, 10296, 11628, 13530, 14028, 14196, 15400, 17766, 19110, 23220, 23436, 24310, 25200, 26796, 32640, 34980, 41616, 43365, 44253, 52326, 55278
Offset: 1

Views

Author

Antonio Roldán, Feb 28 2013

Keywords

Examples

			Triangular 91 and triangular 325 form a Pythagorean triple {325, 91, 312}.
		

Crossrefs

Cf. A213188.

Programs

  • PARI
    {for(i=1,10^3,k=i+1;v=1;a=i*(i+1)/2;while(k
    				

A342491 a(n) = f(x)+f(y)+f(z), where (x,y,h) is the n-th Pythagorean triple listed in (A046083, A046084, A009000), and f(m)=A176774(m) is the smallest polygonality of m.

Original entry on oeis.org

12, 14, 23, 12, 28, 29, 27, 20, 38, 52, 27, 22, 11, 47, 20, 49, 53, 16, 69, 81, 17, 47, 59, 59, 34, 41, 93, 32, 76, 33, 34, 121, 76, 93, 88, 33, 37, 39, 101, 102, 83, 27, 90, 52, 73, 183, 75, 37, 45, 130, 105, 15, 155, 83, 120, 54, 106, 133, 129, 15, 123, 42, 225
Offset: 1

Views

Author

Michel Marcus, Mar 14 2021

Keywords

Comments

Inspired by (A245646, A245647, A245648), for which a(n) = 12.
Examples of lower terms: 11 for (21, 28, 35), 10 for (64, 120, 136) and 9 for (8778, 10296, 13530).

Examples

			a(1) = 12 because (3, 4, 5) are (3-, 4-, 5-) gonal numbers, and 3+4+5=12.
		

Crossrefs

Cf. A213188 (see 2nd comment).

Programs

  • PARI
    tp(n) = my(k=3); while( !ispolygonal(n,k), k++); k; \\ A176774
    f(v) = vecsum(apply(tp, v));
    list(lim) = {my(v=List(), m2, s2, h2, h); for(middle=4, lim-1, m2=middle^2; for(small=1, middle, s2=small^2; if(issquare(h2=m2+s2, &h), if(h>lim, break); listput(v, [h, middle, small]);););); v = vecsort(Vec(v)); apply(f, v);} \\ adapted from A009000

Formula

a(n) = f(A046083(n)) + f(A046084(n)) + f(A009000(n)) where f is A176774.

A342858 a(n) is the least integer h such that there exists a Pythagorean triple (x, y, h) that satisfies f(x)+f(y)+f(h)=n where f(m)=A176774(m) is the smallest polygonality of m; a(n) = 0 if no such h exists.

Original entry on oeis.org

13530, 136, 35, 5, 4510, 10, 100, 45, 51, 1404
Offset: 9

Views

Author

Michel Marcus, Mar 26 2021

Keywords

Comments

a(19) > 10^9 if it exists.
It appears that the triples whose sum is 10 (as in the 2nd example below) have legs n^6 = A001014(n), (n^8 - n^4)/2 = A218131(n+1)/2 and (n^8 + n^4)/2 = A071231(n) for n >= 2; they consist of 2 triangular numbers and 1 square number. - Michel Marcus, Apr 12 2021

Examples

			a(9)  = 13530 with A176774([8778, 10296, 13530]) = [3,3,3].
a(10) = 136   with A176774([64, 120, 136])       = [4,3,3].
a(11) = 35    with A176774([21, 28, 35])         = [3,3,5].
a(12) = 5     with A176774([3, 4, 5])            = [3,4,5].
a(13) = 4510  with A176774([2926, 3432, 4510])   = [3,5,5].
a(14) = 10    with A176774([6, 8, 10])           = [3,8,3].
a(15) = 100   with A176774([28, 96, 100])        = [3,8,4].
a(16) = 45    with A176774([27, 36, 45])         = [10,3,3].
a(17) = 51    with A176774([45, 24, 51])         = [3,9,5].
a(18) = 1404  with A176774([540, 1296, 1404])    = [7,4,7].
		

Crossrefs

Cf. A213188 (see 2nd comment).

Programs

  • PARI
    tp(n) = if (n<3, [n], my(v=List()); fordiv(2*n, k, if(k<2, next); if(k==n, break); my(s=(2*n/k-4+2*k)/(k-1)); if(denominator(s)==1, listput(v, s))); v = Vec(v); v[#v]); \\ A176774
    vsum(v) = vecsum(apply(tp, v));
    lista(limp, lim) = {my(vr = vector(limp)); for(u = 2, sqrtint(lim), for(v = 1, u, if (u*u+v*v > lim, break); if ((gcd(u,v) == 1) && (0 != (u-v)%2), for (i = 1, lim, if (i*(u*u+v*v) > lim, break); my(w = [i*(u*u - v*v), i*2*u*v, i*(u*u+v*v)]); my(h = i*(u*u+v*v)); my(sw = vsum(w)); if (sw <= limp, if (vr[sw] == 0, vr[sw] = h, if (h < vr[sw], vr[sw] = h))););););); vector(#vr - 8, k, vr[k+8]);}
    lista(80, 15000) \\ Michel Marcus, Apr 16 2021
Showing 1-3 of 3 results.