A361291
a(n) = ((2*n + 1)^n - 1)/(2*n).
Original entry on oeis.org
1, 6, 57, 820, 16105, 402234, 12204241, 435984840, 17927094321, 833994048910, 43309534450633, 2483526865641276, 155867505885345241, 10627079738421409410, 782175399728156197665, 61812037545704964935440, 5220088150634922700769761, 469168161404536131943150998
Offset: 1
-
Table[((2n+1)^n-1)/(2n),{n,20}]
-
def A361291(n): return (((n<<1)+1)**n-1)//(n<<1) # Chai Wah Wu, Mar 14 2023
A368584
Table read by rows: T(n, k) = A124320(n + 1, k) * A048993(n, k).
Original entry on oeis.org
1, 0, 2, 0, 3, 12, 0, 4, 60, 120, 0, 5, 210, 1260, 1680, 0, 6, 630, 8400, 30240, 30240, 0, 7, 1736, 45360, 327600, 831600, 665280, 0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280, 0, 9, 11430, 956340, 20207880, 162162000, 575134560, 908107200, 518918400
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 2]
[2] [0, 3, 12]
[3] [0, 4, 60, 120]
[4] [0, 5, 210, 1260, 1680]
[5] [0, 6, 630, 8400, 30240, 30240]
[6] [0, 7, 1736, 45360, 327600, 831600, 665280]
[7] [0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280]
A383130
Coefficients of the linear terms in the continued fraction representation of the product logarithm.
Original entry on oeis.org
1, 1, 1, 5, 17, 133, 1927, 13582711, 92612482895, 10402118970990527, 59203666396198716260449, 83631044830029201279016528831, 1149522186344339904123210420373026673, 458029700061597358458976211208014885543904637441, 203695852839150317577316770934832249000714992664672874100151
Offset: 1
LambertW(x) = x/(1 + x/(1 + x/(2 + 5*x/(3 + 17*x/(10 + 133*x/(17 + 1927*x/(190 + ... ))))))).
-
ClearAll[cf, x];
cf[ O[x]] = {};
cf[ a0_ + O[x]] := {a0};
cf[ ps_] := Module[ {a0, a1, u, v},
a0 = SeriesCoefficient[ ps, {x, 0, 0}];
a1 = SeriesCoefficient[ ps, {x, 0, 1}];
u = Numerator[a1]; v = Denominator[a1];
Join[ If[ a0==0, {}, {a0}],
Prepend[cf[ u*x/(ps-a0) - v], {u,v}]]];
(* Lambert W function W_0(x) up to O(x)^(M+1) *)
M = 10; W0 = Sum[ x^n*(-n)^(n-1)/n!, {n, 1, M}] + x*O[x]^M;
cf[W0] //InputForm
(* {{1, 1}, {1, 1}, {1, 2}, {5, 3}, {17, 10}, {133, 17},
{1927, 190}, {13582711, 94423}, {92612482895, 1597966},
{10402118970990527, 8773814169}} *)
(* Note: Change M to the number of terms to be generated *)
Showing 1-3 of 3 results.
Comments