cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A361291 a(n) = ((2*n + 1)^n - 1)/(2*n).

Original entry on oeis.org

1, 6, 57, 820, 16105, 402234, 12204241, 435984840, 17927094321, 833994048910, 43309534450633, 2483526865641276, 155867505885345241, 10627079738421409410, 782175399728156197665, 61812037545704964935440, 5220088150634922700769761, 469168161404536131943150998
Offset: 1

Views

Author

Stefano Spezia, Mar 12 2023

Keywords

Comments

This sequence is of the form (k^n - 1)/(k - 1) with k = 2*n + 1. See crossrefs in A218722 for other sequences of the same form.

Crossrefs

Programs

  • Mathematica
    Table[((2n+1)^n-1)/(2n),{n,20}]
  • Python
    def A361291(n): return (((n<<1)+1)**n-1)//(n<<1) # Chai Wah Wu, Mar 14 2023

Formula

a(n) = Sum_{i=0..n-1} A005408(n)^i.
a(n) = n! * [x^n] exp(x)*(exp(2*n*x) - 1)/(2*n).
a(n) = n! * [x^n] exp((n+1)*x)*sinh(n*x)/n.
Limit_{n->oo} a(n+1)/(n*a(n)) = 2*e.
Limit_{n->oo} (a(n+1)/a(n) - a(n)/a(n-1)) = 2*e.

A368584 Table read by rows: T(n, k) = A124320(n + 1, k) * A048993(n, k).

Original entry on oeis.org

1, 0, 2, 0, 3, 12, 0, 4, 60, 120, 0, 5, 210, 1260, 1680, 0, 6, 630, 8400, 30240, 30240, 0, 7, 1736, 45360, 327600, 831600, 665280, 0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280, 0, 9, 11430, 956340, 20207880, 162162000, 575134560, 908107200, 518918400
Offset: 0

Views

Author

Peter Luschny, Jan 10 2024

Keywords

Examples

			Triangle starts:
  [0] [1]
  [1] [0, 2]
  [2] [0, 3,   12]
  [3] [0, 4,   60,    120]
  [4] [0, 5,  210,   1260,    1680]
  [5] [0, 6,  630,   8400,   30240,    30240]
  [6] [0, 7, 1736,  45360,  327600,   831600,   665280]
  [7] [0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280]
		

Crossrefs

Cf. A124320 (rising factorial), A048993(Stirling2), A053492 (row sums), A213236 (alternating row sums), A001813 (main diagonal), A368583.

Programs

  • SageMath
    def Trow(n): return [rising_factorial(n+1, k)*stirling_number2(n, k) for k in range(n+1)]
    for n in range(7): print(Trow(n))

A383130 Coefficients of the linear terms in the continued fraction representation of the product logarithm.

Original entry on oeis.org

1, 1, 1, 5, 17, 133, 1927, 13582711, 92612482895, 10402118970990527, 59203666396198716260449, 83631044830029201279016528831, 1149522186344339904123210420373026673, 458029700061597358458976211208014885543904637441, 203695852839150317577316770934832249000714992664672874100151
Offset: 1

Views

Author

Jacob DeMoss, Jun 17 2025

Keywords

Comments

The continued fraction only produces values for the principal branch of the product logarithm.

Examples

			LambertW(x) = x/(1 + x/(1 + x/(2 + 5*x/(3 + 17*x/(10 + 133*x/(17 + 1927*x/(190 + ... ))))))).
		

Crossrefs

Cf. A213236 (e.g.f. of LambertW).

Programs

  • Mathematica
    ClearAll[cf, x];
    cf[ O[x]] = {};
    cf[ a0_ + O[x]] := {a0};
    cf[ ps_] := Module[ {a0, a1, u, v},
      a0 = SeriesCoefficient[ ps, {x, 0, 0}];
      a1 = SeriesCoefficient[ ps, {x, 0, 1}];
      u = Numerator[a1]; v = Denominator[a1];
      Join[ If[ a0==0, {}, {a0}],
         Prepend[cf[ u*x/(ps-a0) - v], {u,v}]]];
    (* Lambert W function W_0(x) up to O(x)^(M+1) *)
    M = 10; W0 = Sum[ x^n*(-n)^(n-1)/n!, {n, 1, M}] + x*O[x]^M;
    cf[W0] //InputForm
    (* {{1, 1}, {1, 1}, {1, 2}, {5, 3}, {17, 10}, {133, 17},
     {1927, 190}, {13582711, 94423}, {92612482895, 1597966},
     {10402118970990527, 8773814169}} *)
    (* Note: Change M to the number of terms to be generated *)

Extensions

More terms from Alois P. Heinz, Jun 17 2025
Showing 1-3 of 3 results.