A213518 Numbers k such that the triangular number k*(k+1)/2 has 2 different digits in base 10.
4, 5, 6, 7, 8, 9, 12, 13, 18, 24, 34, 44, 58, 66, 77, 100, 101, 105, 109, 114, 132, 141, 363, 666, 714, 816, 1000, 1095, 1287, 1332, 1541, 3363, 6666, 10000, 10114, 13332, 66666, 100000, 133332, 666666, 1000000, 1333332, 6666666, 10000000, 13333332, 33336636, 66666666, 100000000
Offset: 1
Links
- David Radcliffe, Table of n, a(n) for n = 1..116 (terms 1..51 from Seiichi Manyama, terms 52..60 from T. D. Noe).
Crossrefs
Programs
-
Haskell
a213518 n = a213518_list !! (n-1) a213518_list = filter ((== 2) . a118668) [0..] -- Reinhard Zumkeller, Jul 11 2015
-
Mathematica
t = {}; Do[tri = n*(n+1)/2; If[Length[Union[IntegerDigits[tri]]] == 2, AppendTo[t, n]], {n, 10^5}]; t
-
PARI
for(k=0, 1e8, if(#Set(digits(k*(k+1)/2))==2, print1(k", "))) \\ Seiichi Manyama, Sep 15 2019
Extensions
a(45)-a(48) from Seiichi Manyama, Sep 15 2019
Comments