cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062691 Triangular numbers that contain exactly 2 different digits.

Original entry on oeis.org

10, 15, 21, 28, 36, 45, 78, 91, 171, 300, 595, 990, 1711, 2211, 3003, 5050, 5151, 5565, 5995, 6555, 8778, 10011, 66066, 222111, 255255, 333336, 500500, 600060, 828828, 887778, 1188111, 5656566, 22221111, 50005000, 51151555, 88877778, 2222211111, 5000050000
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Comments

For n > 2, A309597(n) is a term. - Seiichi Manyama, Sep 15 2019
The other known infinite families of terms are A037156(n) for n > 1, A319170(n), and A383942(n). - David Radcliffe, Aug 25 2025

Examples

			300 is triangular and contains the digits 0 and 3.
		

Crossrefs

Cf. A000217, A045914 (all digits the same), A213516, A213518, A309597.

Programs

  • Mathematica
    Select[Accumulate[Range[14000]],Count[DigitCount[#],Except[0]]==2&] (* Harvey P. Dale, Nov 27 2011 *)
  • PARI
    for(k=0, 1e5, if(#Set(digits(j=k*(k+1)/2))==2, print1(j", "))) \\ Seiichi Manyama, Sep 15 2019

A118668 Number of distinct digits needed to write the n-th triangular number in decimal representation.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 1, 3, 3, 3, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 2, 3, 4, 3, 4, 4, 3, 4, 2, 3, 4, 4, 4, 3, 3, 4, 3, 4, 3, 2, 4, 4, 4, 3, 3, 4, 4, 3, 4, 3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 2, 2, 3, 3, 4
Offset: 0

Views

Author

Reinhard Zumkeller, May 19 2006

Keywords

Comments

0 < a(n) <= 10;
a(n) = A043537(A000217(n)).

Examples

			n=99: 99*(99+1)/2 = 4950 -> a(99) = #{0,4,5,9} = 4;
see A119033 for an overview of sequences with terms composed of not more than 3 distinct digits.
n=100: 100*(100+1)/2 = 5050 -> a(100) = #{0,5} = 2;
		

Crossrefs

Programs

  • Haskell
    a118668 = a043537 . a000217
    a118668_list = map a043537 a000217_list
    -- Reinhard Zumkeller, Jul 11 2015
  • Mathematica
    Length[Union[IntegerDigits[#]]]&/@Accumulate[Range[0,110]] (* Harvey P. Dale, Jul 23 2012 *)
Showing 1-2 of 2 results.