cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A241787 Triangular numbers which have one or more occurrences of exactly four different digits.

Original entry on oeis.org

1035, 1275, 1326, 1378, 1485, 1540, 1596, 1653, 1830, 1953, 2016, 2145, 2346, 2415, 2485, 2701, 2850, 3081, 3160, 3240, 3486, 3570, 3741, 3916, 4095, 4186, 4278, 4371, 4560, 4753, 4851, 4950, 5460, 5671, 6105, 6328, 6903, 7021, 7140, 7260, 7381, 7503, 8256
Offset: 1

Views

Author

Colin Barker, Apr 28 2014

Keywords

Comments

The first term having a repeated digit is 10153.

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Range[200]],Count[DigitCount[#],0]==6&] (* Harvey P. Dale, Jun 29 2022 *)
  • PARI
    s=[]; for(n=0, 300, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==4, s=concat(s, n*(n+1)/2))); s

A241788 Triangular numbers which have one or more occurrences of exactly five different digits.

Original entry on oeis.org

10296, 12403, 13695, 14028, 14365, 14706, 16290, 17205, 19306, 19503, 21736, 21945, 23871, 24310, 24531, 24753, 24976, 27495, 29403, 30628, 30876, 32640, 32896, 34716, 34980, 37128, 37401, 37950, 39621, 40186, 41328, 41905, 42195, 43071, 43956, 46971, 47586
Offset: 1

Views

Author

Colin Barker, Apr 28 2014

Keywords

Comments

The first term having a repeated digit is 100576.

Crossrefs

Programs

  • PARI
    s=[]; for(n=0, 500, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==5, s=concat(s, n*(n+1)/2))); s

A241789 Triangular numbers which have one or more occurrences of exactly six different digits.

Original entry on oeis.org

102378, 103285, 104653, 106953, 108345, 109278, 109746, 120786, 124750, 132870, 135460, 137026, 138075, 150426, 152076, 154290, 158203, 162735, 168490, 170236, 174936, 178503, 189420, 190653, 194376, 197506, 198765, 203841, 205761, 215496, 219453, 231540
Offset: 1

Views

Author

Colin Barker, Apr 28 2014

Keywords

Comments

The first term having a repeated digit is 1004653.

Crossrefs

Programs

  • Mathematica
    Select[Table[(n(n+1))/2,{n,447,681}],Length[Union[ IntegerDigits[ #]]] == 6&] (* Harvey P. Dale, Feb 17 2018 *)
  • PARI
    s=[]; for(n=0, 800, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==6, s=concat(s, n*(n+1)/2))); s

A241790 Triangular numbers which have one or more occurrences of exactly seven different digits.

Original entry on oeis.org

1024596, 1047628, 1053426, 1069453, 1073845, 1078246, 1203576, 1234806, 1345620, 1360425, 1362075, 1386945, 1390278, 1405326, 1430586, 1439056, 1462905, 1486950, 1493856, 1547920, 1549680, 1590436, 1602945, 1624503, 1642578, 1679028, 1684530, 1693720
Offset: 1

Views

Author

Colin Barker, Apr 28 2014

Keywords

Comments

The first term having a repeated digit is 10149765.

Crossrefs

Programs

  • PARI
    s=[]; for(n=0, 2500, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==7, s=concat(s, n*(n+1)/2))); s

A241791 Triangular numbers which have one or more occurrences of exactly eight different digits.

Original entry on oeis.org

10348975, 10623745, 10725396, 10869453, 10934826, 12347965, 12357906, 12487503, 12647935, 12673095, 12784096, 13862745, 14756028, 14826735, 15237960, 15298746, 15304278, 15879430, 16247850, 16384950, 17084935, 17502486, 17543926, 17829406
Offset: 1

Views

Author

Colin Barker, Apr 28 2014

Keywords

Comments

The first term having a repeated digit is 100642578.

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Range[7000]],Length[Union[IntegerDigits[#]]]==8&] (* Harvey P. Dale, Feb 09 2019 *)
  • PARI
    s=[]; for(n=0, 7000, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==8, s=concat(s, n*(n+1)/2))); s

A241792 Triangular numbers which have one or more occurrences of exactly nine different digits.

Original entry on oeis.org

102738945, 120784653, 120893475, 124875306, 126794850, 129854670, 137904528, 142087653, 143287056, 147069825, 149826705, 152783940, 153694278, 160249753, 162495378, 168370425, 173249805, 189725460, 192540876, 193405278, 197438256, 207193546, 230469715
Offset: 1

Views

Author

Colin Barker, Apr 28 2014

Keywords

Comments

The first term having a repeated digit is 1004976528.

Crossrefs

Programs

  • PARI
    s=[]; for(n=0, 40000, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==9, s=concat(s, n*(n+1)/2))); s

A241812 Triangular numbers which have one or more occurrences of exactly ten different digits.

Original entry on oeis.org

1062489753, 1239845706, 1256984730, 1520843976, 1539264870, 1597283460, 1684930275, 1952843760, 1957346028, 1978236450, 2197480365, 2367098415, 2418079653, 2503948761, 2634980715, 2718609453, 2735891406, 2750483196, 2764518903, 2854316790, 2915768430
Offset: 1

Views

Author

Colin Barker, Apr 29 2014

Keywords

Comments

The first term having a repeated digit is a(83) = 10075823946.
Superset of A115940. - R. J. Mathar, May 02 2014

Crossrefs

Programs

  • Mathematica
    Select[Table[(n(n+1))/2,{n,45000,100000}],Min[DigitCount[#]]>0&] (* Harvey P. Dale, Jul 26 2014 *)
  • PARI
    s=[]; for(n=0, 100000, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==10, s=concat(s, n*(n+1)/2))); s

A325907 a(n) = ( (-1)^n * Sum_{k=0..n-2} (-1)^k*10^(2^k) + 10^(2^(n-1)) - ((-1)^n+3)/2 )/3.

Original entry on oeis.org

3, 36, 3363, 33336636, 3333333366663363, 33333333333333336666666633336636, 3333333333333333333333333333333366666666666666663333333366663363
Offset: 1

Views

Author

Seiichi Manyama, Sep 08 2019

Keywords

Comments

All terms are elements of A213517.

Examples

			              36 =        -3 - 1 +        4 * 10^1.
            3363 =       -36 - 1 +       34 * 10^2.
        33336636 =     -3363 - 1 +     3334 * 10^4.
3333333366663363 = -33336636 - 1 + 33333334 * 10^8.
------------------------------------------------------
T(n) = n*(n+1)/2.
               T(3) =                               6.
              T(36) =                             666.
            T(3363) =                         5656566.
        T(33336636) =                 555665666566566.
T(3333333366663363) = 5555555666655656666556566566566.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := ((-1)^n * Sum[(-1)^k * 10^(2^k), {k, 0, n - 2}] + 10^(2^(n - 1)) - ((-1)^n + 3)/2)/3; Array[a, 7] (* Amiram Eldar, May 07 2021 *)
  • PARI
    {a(n) = ((-1)^n*sum(k=0, n-2, (-1)^k*10^2^k)+10^2^(n-1)-((-1)^n+3)/2)/3}

Formula

a(n) = 3 * A325906(n).
a(n) = -a(n-1) - 1 + A093137(2^(n-2)) * 10^(2^(n-2)).

A213518 Numbers k such that the triangular number k*(k+1)/2 has 2 different digits in base 10.

Original entry on oeis.org

4, 5, 6, 7, 8, 9, 12, 13, 18, 24, 34, 44, 58, 66, 77, 100, 101, 105, 109, 114, 132, 141, 363, 666, 714, 816, 1000, 1095, 1287, 1332, 1541, 3363, 6666, 10000, 10114, 13332, 66666, 100000, 133332, 666666, 1000000, 1333332, 6666666, 10000000, 13333332, 33336636, 66666666, 100000000
Offset: 1

Views

Author

T. D. Noe, Jun 22 2012

Keywords

Comments

The list of triangular numbers containing only one digit (A045914) is finite. This list is infinite because numbers like 133332, 666666, and 1000000 occur an infinite number of times.
A118668(a(n)) = 2. - Reinhard Zumkeller, Jul 11 2015
For n > 2, A325907(n) is a term. - Seiichi Manyama, Sep 15 2019

Crossrefs

Cf. A062691 (the corresponding triangular numbers), A213516, A213517, A325907.
Cf. A118668.
Cf. A187127.

Programs

  • Haskell
    a213518 n = a213518_list !! (n-1)
    a213518_list = filter ((== 2) . a118668) [0..]
    -- Reinhard Zumkeller, Jul 11 2015
    
  • Mathematica
    t = {}; Do[tri = n*(n+1)/2; If[Length[Union[IntegerDigits[tri]]] == 2, AppendTo[t, n]], {n, 10^5}]; t
  • PARI
    for(k=0, 1e8, if(#Set(digits(k*(k+1)/2))==2, print1(k", "))) \\ Seiichi Manyama, Sep 15 2019

Extensions

a(45)-a(48) from Seiichi Manyama, Sep 15 2019

A383942 a(n) = (8*10^(2n) - 10^(n+1) + 2) / 9.

Original entry on oeis.org

78, 8778, 887778, 88877778, 8888777778, 888887777778, 88888877777778, 8888888777777778, 888888887777777778, 88888888877777777778, 8888888888777777777778, 888888888887777777777778, 88888888888877777777777778, 8888888888888777777777777778
Offset: 1

Views

Author

David Radcliffe, Aug 18 2025

Keywords

Comments

This is one of four infinite families of triangular numbers consisting of two different digits. The other three families are A319170, A037156 (n>1), and A309597 (n>2).

Crossrefs

Programs

  • Mathematica
    A383942[n_] := (8*10^(2*n) - 10^(n+1) + 2)/9; Array[A383942, 15] (* or *)
    LinearRecurrence[{111, -1110, 1000}, {78, 8778, 887778}, 15] (* Paolo Xausa, Aug 27 2025 *)
  • Python
    def A383942(n): return (8*10**(2*n)-10**(n+1)+2)//9

Formula

a(n) = A000217(A073551(n+1)).
G.f.: 6*x*(13 + 20*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Stefano Spezia, Aug 19 2025
Showing 1-10 of 11 results. Next