cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213547 Antidiagonal sums of the convolution array A213505.

Original entry on oeis.org

1, 12, 68, 260, 777, 1960, 4368, 8856, 16665, 29524, 49764, 80444, 125489, 189840, 279616, 402288, 566865, 784092, 1066660, 1429428, 1889657, 2467256, 3185040, 4069000, 5148585, 6456996, 8031492, 9913708, 12149985, 14791712, 17895680, 21524448, 25746721, 30637740
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2012

Keywords

Comments

Also, the antidiagonal sums of the convolution array A213555.
An m-star is an m-antichain with a smallest element adjoined. Then, a(n) is the number of proper mergings of a 2-star and an (n-1)-chain, see example. - Henri Mühle, Jan 23 2013
Convolution of A000290 and A000578. - Stefano Spezia, Apr 07 2023

Examples

			From _Henri Mühle_, Jan 23 2013: (Start)
For n=2, let S=({s0,s1,s2},{(s0,s0),(s0,s1),(s0,s2),(s1,s1),(s2,s2)}) be a 2-star, and let C=({c},{(c,c)}) be a 1-chain. The a(2)=12 proper mergings of S and C are:
({s0,s1,s2,c},{(s0,s0),(s0,s1),(s0,s2),(s1,s1),(s2,s2),(c,c)})
({s0,s1,s2,c},{(c,s0),(c,s1),(c,s2),(s0,s0),(s0,s1),(s0,s2),(s1,s1),(s2,s2),(c,c)})
({s0,s1,s2,c},{(c,s1),(s0,s0),(s0,s1),(s0,s2),(s1,s1),(s2,s2),(c,c)})
({s0,s1,s2,c},{(c,s2),(s0,s1),(s0,s2),(s1,s1),(s2,s2),(c,c)})
({s0,s1,s2,c},{(c,s1),(c,s2),(s0,s1),(s0,s2),(s1,s1),(s2,s2),(c,c)})
({s0,s1,s2,c},{(s0,c),(s0,s0),(s0,s1),(s0,s2),(s1,s1),(s2,s2),(c,c)})
({s0,s1,s2,c},{(s0,c),(c,s1),(s0,s0),(s0,s1),(s0,s2),(s1,s1),(s2,s2),(c,c)})
({s0,s1,s2,c},{(s0,c),(c,s2),(s0,s0),(s0,s1),(s0,s2),(s1,s1),(s2,s2),(c,c)})
({s0,s1,s2,c},{(s0,c),(c,s1),(c,s2),(s0,s0),(s0,s1),(s0,s2),(s1,s1),(s2,s2),(c,c)})
({s0,s1,s2,c},{(s1,c),(s0,s0),(s0,s1),(s0,s2),(s1,s1),(s2,s2),(c,c)})
({s0,s1,s2,c},{(s2,c),(s0,s0),(s0,s1),(s0,s2),(s1,s1),(s2,s2),(c,c)})
({s0,s1,s2,c},{(s1,c),(s2,c),(s0,s0),(s0,s1),(s0,s2),(s1,s1),(s2,s2),(c,c)})
(End)
		

Crossrefs

Programs

Formula

a(n) = (n^6 + 6*n^5 + 15*n^4 + 20*n^3 + 14*n^2 + 4*n)/60.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1+x)*(1+4*x+x^2)/(1-x)^7.
a(n) = a(-2-n) and a(n-1) = (n^6 - n^2) / 60 for all n in Z. - Michael Somos, Oct 08 2017
E.g.f.: exp(x)*x*(60 + 300*x + 350*x^2 + 140*x^3 + 21*x^4 + x^5)/60. - Stefano Spezia, Apr 07 2023