A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A098359
Multiplication table of the square numbers read by antidiagonals.
Original entry on oeis.org
1, 4, 4, 9, 16, 9, 16, 36, 36, 16, 25, 64, 81, 64, 25, 36, 100, 144, 144, 100, 36, 49, 144, 225, 256, 225, 144, 49, 64, 196, 324, 400, 400, 324, 196, 64, 81, 256, 441, 576, 625, 576, 441, 256, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 400, 729, 1024, 1225, 1296, 1225, 1024, 729, 400, 121
Offset: 1
Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
Square array A(n,k) begins:
1, 4, 9, 16, 25, 36, 49, ...
4, 16, 36, 64, 100, 144, 196, ...
9, 36, 81, 144, 225, 324, 441, ...
16, 64, 144, 256, 400, 576, 784, ...
25, 100, 225, 400, 625, 900, 1225, ...
36, 144, 324, 576, 900, 1296, 1764, ...
49, 196, 441, 784, 1225, 1764, 2401, ...
-
A:= (n,k)-> (n*k)^2:
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, May 19 2025
A213505
Rectangular array: (row n) = b**c, where b(h) = h^2, c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 8, 4, 34, 25, 9, 104, 88, 52, 16, 259, 234, 170, 89, 25, 560, 524, 424, 280, 136, 36, 1092, 1043, 899, 674, 418, 193, 49, 1968, 1904, 1708, 1384, 984, 584, 260, 64, 3333, 3252, 2996, 2555, 1979, 1354, 778, 337, 81, 5368, 5268, 4944, 4368, 3584
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....8.....34....104...259....560
4....25....88....234...524....1043
9....52....170...424...899....1708
16...89....280...674...1384...2555
25...136...418...984...1979...3584
...
T(5,1) = (1)**(25) = 25
T(5,2) = (1,4)**(25,36) = 1*36+4*25 = 136
T(5,3) = (1,4,9)**(25,36,49) = 1*49+4*36+9*25 = 418
-
b[n_] := n^2; c[n_] := n^2
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213505 *)
d = Table[t[n, n], {n, 1, 40}] (* A213546 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213547 *)
A213555
Rectangular array: (row n) = b**c, where b(h) = h^3, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 10, 2, 46, 19, 3, 146, 82, 28, 4, 371, 246, 118, 37, 5, 812, 596, 346, 154, 46, 6, 1596, 1253, 821, 446, 190, 55, 7, 2892, 2380, 1694, 1046, 546, 226, 64, 8, 4917, 4188, 3164, 2135, 1271, 646, 262, 73, 9, 7942, 6942, 5484, 3948, 2576, 1496, 746
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1...10...46....146...371....812
2...19...82....246...596....1253
3...28...118...346...821....1694
4...37...154...446...1046...2135
5...46...190...546...1271...2576
6...55...226...646...1496...3017
-
b[n_] := n^3; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213555 *)
d = Table[t[n, n], {n, 1, 40}] (* A213556 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213547 *)
A138451
a(n) = (prime(n)^6-prime(n)^2)/60.
Original entry on oeis.org
1, 12, 260, 1960, 29524, 80444, 402288, 784092, 2467256, 9913708, 14791712, 42762084, 79168376, 105356020, 179653552, 369405972, 703008836, 858672844, 1507639628, 2135004648, 2522237016, 4051457488, 5449006108, 8283021384
Offset: 1
-
[( NthPrime(n)^6-NthPrime(n)^2 )/60: n in [1..30]]; // Vincenzo Librandi, Sep 11 2014
-
seq((ithprime(n)^6-ithprime(n)^2)/60, n=1..100); # Robert Israel, Sep 11 2014
-
a = {}; Do[p = Prime[n]; AppendTo[a, (p^6 - p^2)/60], {n, 1, 50}]; a
(#^6-#^2)/60&/@Prime[Range[30]] (* Harvey P. Dale, Sep 11 2014 *)
-
forprime(p=2,1e3,print1((p^6-p^2)/60", ")) \\ Charles R Greathouse IV, Jul 15 2011
A231548
Numbers n such that 2*n - 1 < sigma(n) - sigma(n-2).
Original entry on oeis.org
1680, 2520, 3360, 3780, 3960, 4200, 4680, 5040, 6300, 6720, 7560, 7920, 8820, 9240, 9360, 10080, 10800, 10920, 11340, 11760, 11880, 12600, 13440, 13860, 14040, 15120, 15840, 15960, 16380, 16800, 17280, 17640, 18480, 18900, 19800, 20160, 20520, 21000, 21420
Offset: 1
1680 is in sequence because antisigma(1680) = 1406088 < antisigma(1678) = 1406161.
Cf.
A024816,
A213547 (numbers n such that antisigma(n) < antisigma(n-1)).
A195166
Numbers expressible as 2^a - 2^b, with 0 <= b < a, such that n^a - n^b is divisible by 2^a - 2^b for all n.
Original entry on oeis.org
1, 2, 6, 12, 30, 24, 60, 120, 252, 240, 504, 16380, 32760, 65520
Offset: 1
a(3) = 6 belongs to this sequence since (n^3 - n)/6 = C(n+1, 3) = A000292(n-1).
- M. Ram Murty and V. Kumar Murty, On a Problem of Ruderman, Amer. Math. Monthly 118 (2011), 644-650, available from the first author's website.
- Harry Ruderman, Problem E2468, Amer. Math. Monthly 81 (1974), p. 405.
- A. Schinzel, On primitive prime factors of a^n - b^n, Proc. Cambridge Phil. Soc. 58 (1962), 556-562.
- Qi Sun and Ming Zhi Zhang, Pairs where 2^a-2^b divides n^a-n^b for all n, Proc. Amer. Math. Soc. 93 (1985), 218-220.
- The Mod Set Stanford University and Carl Pomerance, When 2^m - 2^n divides 3^m - 3^n, remarks to Problem E2468*, Amer. Math. Monthly 84 (1977), 59-60.
- W. Y. Velez, When 2^m - 2^n divides 3^m - 3^n, remarks to Problem E2468, Amer. Math. Monthly 83 (1976), 288-289.
Showing 1-7 of 7 results.
Comments