cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A213500 Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.

Examples

			Northwest corner (the array is read by southwest falling antidiagonals):
  1,  4, 10, 20,  35,  56,  84, ...
  2,  7, 16, 30,  50,  77, 112, ...
  3, 10, 22, 40,  65,  98, 140, ...
  4, 13, 28, 50,  80, 119, 168, ...
  5, 16, 34, 60,  95, 140, 196, ...
  6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
		

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    b[n_] := n; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213500 *)
  • PARI
    t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
    tabl(12) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    def t(n, k): return sum((k - i) * (n + i) for i in range(k))
    for n in range(1, 13):
        print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.

A098359 Multiplication table of the square numbers read by antidiagonals.

Original entry on oeis.org

1, 4, 4, 9, 16, 9, 16, 36, 36, 16, 25, 64, 81, 64, 25, 36, 100, 144, 144, 100, 36, 49, 144, 225, 256, 225, 144, 49, 64, 196, 324, 400, 400, 324, 196, 64, 81, 256, 441, 576, 625, 576, 441, 256, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 400, 729, 1024, 1225, 1296, 1225, 1024, 729, 400, 121
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004

Keywords

Comments

sum_{k=0..2n-2} (-1)^k*a(A000124(2n-2)+k-1) = n. See A003991. - Charlie Marion, Apr 22 2013

Examples

			Square array A(n,k) begins:
   1,   4,   9,  16,   25,   36,   49, ...
   4,  16,  36,  64,  100,  144,  196, ...
   9,  36,  81, 144,  225,  324,  441, ...
  16,  64, 144, 256,  400,  576,  784, ...
  25, 100, 225, 400,  625,  900, 1225, ...
  36, 144, 324, 576,  900, 1296, 1764, ...
  49, 196, 441, 784, 1225, 1764, 2401, ...
		

Crossrefs

Antidiagonal sums give A033455.
Main diagonal gives A000583.

Programs

  • Maple
    A:= (n,k)-> (n*k)^2:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, May 19 2025

Formula

A(n,k) = n^2*k^2.
G.f.: [xy(1+x)(1+y)] / [(1-x)^3 * (1-y)^3 ]. - Ralf Stephan, Oct 27 2004
Sum_{j=1..n} A(j,1+n-j)*j = A213547(n). - Alois P. Heinz, May 19 2025

Extensions

Offset corrected by Alois P. Heinz, May 19 2025

A213505 Rectangular array: (row n) = b**c, where b(h) = h^2, c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 8, 4, 34, 25, 9, 104, 88, 52, 16, 259, 234, 170, 89, 25, 560, 524, 424, 280, 136, 36, 1092, 1043, 899, 674, 418, 193, 49, 1968, 1904, 1708, 1384, 984, 584, 260, 64, 3333, 3252, 2996, 2555, 1979, 1354, 778, 337, 81, 5368, 5268, 4944, 4368, 3584
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2012

Keywords

Comments

Principal diagonal: A213546.
Antidiagonal sums: A213547.
Row 1, (1,4,9,...)**(1,4,9,...): A033455.
Row 2, (1,4,9,...)**(4,9,16,...): (k^5 + 10*k^4 + 40*k^3 + 50*k^2 +19*k)/30.
Row 3, (1,4,9,...)**(9,16,25,...): (k^5 + 15*k^4 + 90*k^3 + 120*k^2+44*k)/30.
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....8.....34....104...259....560
4....25....88....234...524....1043
9....52....170...424...899....1708
16...89....280...674...1384...2555
25...136...418...984...1979...3584
...
T(5,1) = (1)**(25) = 25
T(5,2) = (1,4)**(25,36) = 1*36+4*25 = 136
T(5,3) = (1,4,9)**(25,36,49) = 1*49+4*36+9*25 = 418
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := n^2; c[n_] := n^2
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213505 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213546 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213547 *)

Formula

T(n,k) = 6*T(n,k-1) - 15*T(n,k-2) + 20*T(n,k-3) - 15*T(n,k-4) + 6*T(n,k-5) - T(n,k-6).
G.f. for row n: f(x)/g(x), where f(x) = n^2 - (n^2 - 2*n - 1)*x - (n^2 - 2)*x^2 - ((n - 1)^2)*x^3 and g(x) = (1 - x)^6.

A213555 Rectangular array: (row n) = b**c, where b(h) = h^3, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 10, 2, 46, 19, 3, 146, 82, 28, 4, 371, 246, 118, 37, 5, 812, 596, 346, 154, 46, 6, 1596, 1253, 821, 446, 190, 55, 7, 2892, 2380, 1694, 1046, 546, 226, 64, 8, 4917, 4188, 3164, 2135, 1271, 646, 262, 73, 9, 7942, 6942, 5484, 3948, 2576, 1496, 746
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2012

Keywords

Comments

Principal diagonal: A213556.
Antidiagonal sums: A213547.
Row 1, (1,8,27,...)**(1,2,3,...): A024166.
Row 2, (1,8,27,...)**(2,3,4,...): (3*k^5 + 30*k^4 + 55*k^3 + 30*k^2 + 2*k)/60.
Row 3, (1,8,27,...)**(3,4,5,...): (3*k^5 + 45*k^4 + 85*k^3 + 45*k^2 + 2*k)/60.
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...10...46....146...371....812
2...19...82....246...596....1253
3...28...118...346...821....1694
4...37...154...446...1046...2135
5...46...190...546...1271...2576
6...55...226...646...1496...3017
		

Crossrefs

Programs

  • Mathematica
    b[n_] := n^3; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213555 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213556 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213547 *)

Formula

T(n,k) = 6*T(n,k-1) - 15*T(n,k-2) + 20*T(n,k-3) - 15*T(n,k-4) + 6*T(n,k-5) -T(n,k-6).
G.f. for row n: f(x)/g(x), where f(x) = n + (3*n + 1)*x - (3*n - 4)*x^2 - (n - 1)*x^3 and g(x) = (1 - x)^6.

A138451 a(n) = (prime(n)^6-prime(n)^2)/60.

Original entry on oeis.org

1, 12, 260, 1960, 29524, 80444, 402288, 784092, 2467256, 9913708, 14791712, 42762084, 79168376, 105356020, 179653552, 369405972, 703008836, 858672844, 1507639628, 2135004648, 2522237016, 4051457488, 5449006108, 8283021384
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2008

Keywords

Crossrefs

Programs

  • Magma
    [( NthPrime(n)^6-NthPrime(n)^2 )/60: n in [1..30]]; // Vincenzo Librandi, Sep 11 2014
  • Maple
    seq((ithprime(n)^6-ithprime(n)^2)/60, n=1..100); # Robert Israel, Sep 11 2014
  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, (p^6 - p^2)/60], {n, 1, 50}]; a
    (#^6-#^2)/60&/@Prime[Range[30]] (* Harvey P. Dale, Sep 11 2014 *)
  • PARI
    forprime(p=2,1e3,print1((p^6-p^2)/60", ")) \\ Charles R Greathouse IV, Jul 15 2011
    

Formula

a(n) = A213547(prime(n)-1). - Robert Israel, Sep 11 2014

A231548 Numbers n such that 2*n - 1 < sigma(n) - sigma(n-2).

Original entry on oeis.org

1680, 2520, 3360, 3780, 3960, 4200, 4680, 5040, 6300, 6720, 7560, 7920, 8820, 9240, 9360, 10080, 10800, 10920, 11340, 11760, 11880, 12600, 13440, 13860, 14040, 15120, 15840, 15960, 16380, 16800, 17280, 17640, 18480, 18900, 19800, 20160, 20520, 21000, 21420
Offset: 1

Views

Author

Jaroslav Krizek, Nov 12 2013

Keywords

Comments

Also numbers n such that antisigma(n) < antisigma(n-2), where antisigma(n) = A024816(n) = the sum of the non-divisors of n that are between 1 and n.
Sequence contains anomalous increased frequency of values ending with digit 0.
Conjecture: there are no numbers n such that antisigma(n) < antisigma(n-3).

Examples

			1680 is in sequence because antisigma(1680) = 1406088 < antisigma(1678) = 1406161.
		

Crossrefs

Cf. A024816, A213547 (numbers n such that antisigma(n) < antisigma(n-1)).

A195166 Numbers expressible as 2^a - 2^b, with 0 <= b < a, such that n^a - n^b is divisible by 2^a - 2^b for all n.

Original entry on oeis.org

1, 2, 6, 12, 30, 24, 60, 120, 252, 240, 504, 16380, 32760, 65520
Offset: 1

Views

Author

Michel Marcus, Dec 21 2012

Keywords

Comments

1 = 2^1 - 2^0. (n^1 - n^0)/1 : A000027
2 = 2^2 - 2^1. (n^2 - n^1)/2 : A000217
6 = 2^3 - 2^1. (n^3 - n^1)/6 : A000292
12 = 2^4 - 2^2. (n^4 - n^2)/12 : A002415
30 = 2^5 - 2^1. (n^5 - n^1)/30 : A033455
24 = 2^5 - 2^3. (n^5 - n^3)/24 : A006414
60 = 2^6 - 2^2. (n^6 - n^2)/60 : A213547
120 = 2^7 - 2^3. (n^7 - n^3)/120 : A114239
252 = 2^8 - 2^2. (n^8 - n^2)/252 :
240 = 2^8 - 2^4. (n^8 - n^4)/240 : A078876
504 = 2^9 - 2^3. (n^9 - n^3)/504 :
16380 = 2^14 - 2^2. (n^14 - n^2)/16380 :
32760 = 2^15 - 2^3. (n^15 - n^3)/32760 :
65520 = 2^16 - 2^4. (n^16 - n^4)/65520 :
Comment from Tomohiro Yamada, Oct 05 2022: (Start)
"The Mod Set Stanford University" and Carl Pomerance independently noted that the completeness of this sequence follows from a result of Schinzel on primitive prime factors of sequences a^n - b^n in the remark to a problem of Harry Ruderman asking whether if 2^a - 2^b divides 3^a - 3^b, then 2^a - 2^b belongs to this sequence.
The Mod Set verified that if a > b, 2^a - 2^b divides 3^a - 3^b, but 2^a - 2^b does not belong to this sequence, then a - b > 1900. Ram Murty and Kumar Murty proved that there are only finitely many natural numbers a, b such that 2^a - 2^b divides 3^a - 3^b.
Qi Sun and Ming Zhi Zhang also showed that if a > b and n^a - n^b is divisible by 2^a - 2^b for all n, then 2^a - 2^b belongs to this sequence. (End)

Examples

			a(3) = 6 belongs to this sequence since (n^3 - n)/6 = C(n+1, 3) = A000292(n-1).
		
Showing 1-7 of 7 results.