A213569 Principal diagonal of the convolution array A213568.
1, 7, 25, 71, 181, 435, 1009, 2287, 5101, 11243, 24553, 53223, 114661, 245731, 524257, 1114079, 2359261, 4980699, 10485721, 22020055, 46137301, 96468947, 201326545, 419430351, 872415181, 1811939275, 3758096329, 7784628167
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
Programs
-
GAP
List([1..30], n-> 2^n*(n+1) -(2*n+1)); # G. C. Greubel, Jul 25 2019
-
Magma
[2^n*(n+1) -(2*n+1): n in [1..30]]; // G. C. Greubel, Jul 25 2019
-
Maple
f:= gfun:-rectoproc({a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4), a(1)=1,a(2)=7,a(3)=25,a(4)=71},a(n),remember): map(f, [$1..30]); # Robert Israel, Sep 19 2017
-
Mathematica
(* First program *) b[n_]:= 2^(n-1); c[n_]:= n; t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213568 *) d = Table[t[n, n], {n, 1, 40}] (* A213569 *) s[n_]:= Sum[t[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A047520 *) (* Additional programs *) LinearRecurrence[{6,-13,12,-4},{1,7,25,71},30] (* Harvey P. Dale, Jan 06 2015 *) Table[2^n*(n+1) -(2*n+1), {n,30}] (* G. C. Greubel, Jul 25 2019 *)
-
PARI
my(x='x+O('x^30)); Vec(x*(1+x-4*x^2)/((1-2*x)^2*(1-x)^2)) \\ Altug Alkan, Sep 19 2017
-
PARI
vector(30, n, 2^n*(n+1) -(2*n+1)) \\ G. C. Greubel, Jul 25 2019
-
Sage
[2^n*(n+1) -(2*n+1) for n in (1..30)] # G. C. Greubel, Jul 25 2019
Formula
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).
G.f.: x*(1 + x - 4*x^2)/( (1-2*x)^2*(1-x)^2 ).
a(n) = A001787(n+1)- 2*n - 1. - J. M. Bergot, Jan 22 2013
a(n) = Sum_{k=1..n} Sum_{i=0..n} (n-i) * C(k,i). - Wesley Ivan Hurt, Sep 19 2017
Comments