A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A213568
Rectangular array: (row n) = b**c, where b(h) = 2^(h-1), c(h) = n-1+h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 11, 7, 3, 26, 18, 10, 4, 57, 41, 25, 13, 5, 120, 88, 56, 32, 16, 6, 247, 183, 119, 71, 39, 19, 7, 502, 374, 246, 150, 86, 46, 22, 8, 1013, 757, 501, 309, 181, 101, 53, 25, 9, 2036, 1524, 1012, 628, 372, 212, 116, 60, 28, 10, 4083, 3059, 2035, 1267
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1...4....11...26....57....120
2...7....18...41....88....183
3...10...25...56....119...246
4...13...32...71....150...309
5...16...39...86....181...372
6...19...46...101...212...435
-
Flat(List([1..12], n-> List([1..n], k-> 2^(n-k+1)*(k+1) -(n+2) ))); # G. C. Greubel, Jul 26 2019
-
[2^(n-k+1)*(k+1) -(n+2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 26 2019
-
(* First program *)
b[n_]:= 2^(n-1); c[n_]:= n;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213568 *)
d = Table[t[n, n], {n, 1, 40}] (* A213569 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A047520 *)
(* Second program *)
Table[2^(n-k+1)*(k+1) -(n+2), {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 26 2019 *)
-
for(n=1,12, for(k=1,n, print1(2^(n-k+1)*(k+1) -(n+2), ", "))) \\ G. C. Greubel, Jul 26 2019
-
[[2^(n-k+1)*(k+1) -(n+2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 26 2019
A213574
Principal diagonal of the convolution array A213573.
Original entry on oeis.org
1, 17, 93, 349, 1093, 3093, 8221, 20957, 51861, 125509, 298477, 699789, 1621285, 3718325, 8453181, 19069885, 42728245, 95156901, 210762253, 464517485, 1019214021, 2227173397, 4848613213, 10519312029, 22749902293, 49056576773, 105495131181, 226291086157
Offset: 1
-
List([1..30], n-> 2^n*(3+2*n+n^2) - (3+4*n+4*n^2)); # G. C. Greubel, Jul 25 2019
-
[2^n*(3+2*n+n^2) - (3+4*n+4*n^2): n in [1..30]]; // G. C. Greubel, Jul 25 2019
-
(* First program *)
b[n_]:= 2^(n-1); c[n_]:= n;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213568 *)
d = Table[t[n, n], {n, 1, 40}] (* A213569 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A047520 *)
(* Additional programs *)
LinearRecurrence[{9,-33,63,-66,36,-8},{1,17,93,349,1093,3093},30] (* Harvey P. Dale, Jun 25 2014 *)
Rest[CoefficientList[Series[x(1+8x-27x^2+10x^3+16x^4)/(1-3x+2x^2)^3, {x, 0, 30}], x]] (* Vincenzo Librandi, Jun 26 2014 *)
-
Vec(x*(1+8*x-27*x^2+10*x^3+16*x^4)/((1-x)^3*(1-2*x)^3) + O(x^30)) \\ Colin Barker, Oct 30 2017
-
vector(30, n, 2^n*(3+2*n+n^2) - (3+4*n+4*n^2)) \\ G. C. Greubel, Jul 25 2019
-
[2^n*(3+2*n+n^2) - (3+4*n+4*n^2) for n in (1..30)] # G. C. Greubel, Jul 25 2019
A327916
Triangle T(k, n) read by rows: Array A(k, n) = 2^k*(k + 1 + 2*n), k >= 0, n >= 0, read by antidiagonals upwards.
Original entry on oeis.org
1, 4, 3, 12, 8, 5, 32, 20, 12, 7, 80, 48, 28, 16, 9, 192, 112, 64, 36, 20, 11, 448, 256, 144, 80, 44, 24, 13, 1024, 576, 320, 176, 96, 52, 28, 15, 2304, 1280, 704, 384, 208, 112, 60, 32, 17, 5120, 2816, 1536, 832, 448, 240, 128, 68, 36, 19, 11264, 6144, 3328, 1792, 960, 512, 272, 144, 76, 40, 21
Offset: 0
The triangle T(k, n) begins:
k\n 0 1 2 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------
0: 1
1: 4 3
2: 12 8 5
3: 32 20 12 7
4: 80 48 28 16 9
5: 192 112 64 36 20 11
6: 448 256 144 80 44 24 13
7: 1024 576 320 176 96 52 28 15
8: 2304 1280 704 384 208 112 60 32 17
9: 5120 2816 1536 832 448 240 128 68 36 19
10: 11264 6144 3328 1792 960 512 272 144 76 40 21
...
The sequence of (sub)diagonal k, for k >= 0, is the row k sequence of array A: {(k + 2*n + 1)*2^k}_{k >= 0}.
-
Table[2^#*(# + 1 + 2 n) &[k - n], {k, 0, 10}, {n, 0, k}] // Flatten (* Michael De Vlieger, Oct 03 2019 *)
Showing 1-4 of 4 results.
Comments