A213569
Principal diagonal of the convolution array A213568.
Original entry on oeis.org
1, 7, 25, 71, 181, 435, 1009, 2287, 5101, 11243, 24553, 53223, 114661, 245731, 524257, 1114079, 2359261, 4980699, 10485721, 22020055, 46137301, 96468947, 201326545, 419430351, 872415181, 1811939275, 3758096329, 7784628167
Offset: 1
-
List([1..30], n-> 2^n*(n+1) -(2*n+1)); # G. C. Greubel, Jul 25 2019
-
[2^n*(n+1) -(2*n+1): n in [1..30]]; // G. C. Greubel, Jul 25 2019
-
f:= gfun:-rectoproc({a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4),
a(1)=1,a(2)=7,a(3)=25,a(4)=71},a(n),remember):
map(f, [$1..30]); # Robert Israel, Sep 19 2017
-
(* First program *)
b[n_]:= 2^(n-1); c[n_]:= n;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213568 *)
d = Table[t[n, n], {n, 1, 40}] (* A213569 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A047520 *)
(* Additional programs *)
LinearRecurrence[{6,-13,12,-4},{1,7,25,71},30] (* Harvey P. Dale, Jan 06 2015 *)
Table[2^n*(n+1) -(2*n+1), {n,30}] (* G. C. Greubel, Jul 25 2019 *)
-
my(x='x+O('x^30)); Vec(x*(1+x-4*x^2)/((1-2*x)^2*(1-x)^2)) \\ Altug Alkan, Sep 19 2017
-
vector(30, n, 2^n*(n+1) -(2*n+1)) \\ G. C. Greubel, Jul 25 2019
-
[2^n*(n+1) -(2*n+1) for n in (1..30)] # G. C. Greubel, Jul 25 2019
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A000247
a(n) = 2^n - n - 2.
Original entry on oeis.org
0, 3, 10, 25, 56, 119, 246, 501, 1012, 2035, 4082, 8177, 16368, 32751, 65518, 131053, 262124, 524267, 1048554, 2097129, 4194280, 8388583, 16777190, 33554405, 67108836, 134217699, 268435426, 536870881, 1073741792, 2147483615
Offset: 2
a(3) = 4!/(2!*2!*2!) = 3.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 296.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 2..300
- Renzo Cavalieri, Moduli spaces of pointed rational curves, (2016).
- Antal E. Fekete, Apropos Two Notes on Notation, The Amer. Math. Monthly, Vol. 101, No. 8 (Oct., 1994), pp. 771-778. See p. 776.
- Robert Israel et al, Primes 2^n - n - 2, Mathematics StackExchange.
- L. E. Jeffery, Unit-primitive matrices
- T. Mansour, Restricted permutations by patterns of type 2-1, arXiv:math/0202219 [math.CO], 2002.
- Mathoverflow, Face numbers for tropical Grassmannian G'_2,7 simplicial complex?
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Erik Vigren and Andreas Dieckmann, A New Result in Form of Finite Triple Sums for a Series from Ramanujan's Notebooks, Symmetry (2022) Vol. 14, No. 6, 1090.
- Alex Vinokur, Fibonacci-like polynomials produced by m-ary Huffman codes for absolutely ordered sequences, arXiv:cs/0411002 [cs.DM], 2004.
- Eric Weisstein's World of Mathematics, Centipede Graph
- Eric Weisstein's World of Mathematics, Connected Dominating Set
- Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
-
List([2..40], n-> 2^n -n-2); # G. C. Greubel, Jul 26 2019
-
[2^n -n-2: n in [2..40]]; // G. C. Greubel, Jul 26 2019
-
A000247:=(-3+2*z)/((2*z-1)*(z-1)**2); # Simon Plouffe in his 1992 dissertation
-
LinearRecurrence[{4,-5,2}, {0,3,10}, 40] (* Harvey P. Dale, Aug 23 2011 *)
Table[2^n -n-2, {n,2,40}] (* Eric W. Weisstein, Aug 09 2017 *)
-
A000247(n):=2^n-n-2$
makelist(A000247(n),n,2,30); /* Martin Ettl, Nov 08 2012 */
-
a(n)=2^n-n-2 \\ Charles R Greathouse IV, Sep 28 2015
-
[2^n -n-2 for n in (2..40)] # G. C. Greubel, Jul 26 2019
More terms from Larry Reeves (larryr(AT)acm.org), Dec 04 2000
I recently changed the beginning of this sequence so the formulas etc. may need to be adjusted. -
N. J. A. Sloane, Jan 24 2006
A047520
a(n) = 2*a(n-1) + n^2, a(0) = 0.
Original entry on oeis.org
0, 1, 6, 21, 58, 141, 318, 685, 1434, 2949, 5998, 12117, 24378, 48925, 98046, 196317, 392890, 786069, 1572462, 3145285, 6290970, 12582381, 25165246, 50331021, 100662618, 201325861, 402652398, 805305525, 1610611834, 3221224509
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Filippo Disanto, Some Statistics on the Hypercubes of Catalan Permutations, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.2.
- Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2).
-
List([0..30], n-> 6*2^n -(n^2+4*n+6)); # G. C. Greubel, Jul 25 2019
-
a047520 n = sum $ zipWith (*)
(reverse $ take n $ tail a000290_list) a000079_list
-- Reinhard Zumkeller, Nov 30 2012
-
[ 6*2^n-n^2-4*n-6: n in [0..30]]; // Vincenzo Librandi, Aug 22 2011
-
RecurrenceTable[{a[0]==0,a[n]==2a[n-1]+n^2},a[n],{n,30}] (* or *) LinearRecurrence[{5,-9,7,-2},{0,1,6,21},31] (* Harvey P. Dale, Aug 21 2011 *)
f[n_]:= 2^n*Sum[i^2/2^i, {i, n}]; Array[f, 30] (* Robert G. Wilson v, Nov 28 2012 *)
-
vector(30, n, n--; 6*2^n -(n^2+4*n+6)) \\ G. C. Greubel, Jul 25 2019
-
[6*2^n -(n^2+4*n+6) for n in (0..30)] # G. C. Greubel, Jul 25 2019
A095151
a(n+3) = 3*a(n+2) - 2*a(n+1) + 1 with a(0)=0, a(1)=2.
Original entry on oeis.org
0, 2, 7, 18, 41, 88, 183, 374, 757, 1524, 3059, 6130, 12273, 24560, 49135, 98286, 196589, 393196, 786411, 1572842, 3145705, 6291432, 12582887, 25165798, 50331621, 100663268, 201326563, 402653154, 805306337, 1610612704, 3221225439
Offset: 0
a(6) = 183 = 3*88 -2*41 + 1.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Péter Burcsi, Gabriele Fici, Zsuzsanna Lipták, Rajeev Raman, and Joe Sawada, Generating a Gray code for prefix normal words in amortized polylogarithmic time per word, arXiv:2003.03222 [cs.DS], 2020.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
-
List([0..30], n-> 3*2^n -(n+3)); # G. C. Greubel, Jul 26 2019
-
[3*2^n -(n+3): n in [0..30]]; // G. C. Greubel, Jul 26 2019
-
Table[3*2^n -(n+3), {n,0,30}] (* G. C. Greubel, Jul 26 2019 *)
-
vector(30, n, n--; 3*2^n -(n+3)) \\ G. C. Greubel, Jul 26 2019
-
[3*2^n -(n+3) for n in (0..30)] # G. C. Greubel, Jul 26 2019
Deleted a comment and file that were unrelated to this sequence. -
N. J. A. Sloane, Aug 17 2025
A213574
Principal diagonal of the convolution array A213573.
Original entry on oeis.org
1, 17, 93, 349, 1093, 3093, 8221, 20957, 51861, 125509, 298477, 699789, 1621285, 3718325, 8453181, 19069885, 42728245, 95156901, 210762253, 464517485, 1019214021, 2227173397, 4848613213, 10519312029, 22749902293, 49056576773, 105495131181, 226291086157
Offset: 1
-
List([1..30], n-> 2^n*(3+2*n+n^2) - (3+4*n+4*n^2)); # G. C. Greubel, Jul 25 2019
-
[2^n*(3+2*n+n^2) - (3+4*n+4*n^2): n in [1..30]]; // G. C. Greubel, Jul 25 2019
-
(* First program *)
b[n_]:= 2^(n-1); c[n_]:= n;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213568 *)
d = Table[t[n, n], {n, 1, 40}] (* A213569 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A047520 *)
(* Additional programs *)
LinearRecurrence[{9,-33,63,-66,36,-8},{1,17,93,349,1093,3093},30] (* Harvey P. Dale, Jun 25 2014 *)
Rest[CoefficientList[Series[x(1+8x-27x^2+10x^3+16x^4)/(1-3x+2x^2)^3, {x, 0, 30}], x]] (* Vincenzo Librandi, Jun 26 2014 *)
-
Vec(x*(1+8*x-27*x^2+10*x^3+16*x^4)/((1-x)^3*(1-2*x)^3) + O(x^30)) \\ Colin Barker, Oct 30 2017
-
vector(30, n, 2^n*(3+2*n+n^2) - (3+4*n+4*n^2)) \\ G. C. Greubel, Jul 25 2019
-
[2^n*(3+2*n+n^2) - (3+4*n+4*n^2) for n in (1..30)] # G. C. Greubel, Jul 25 2019
A208638
Number of 3 X n 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.
Original entry on oeis.org
4, 13, 32, 71, 150, 309, 628, 1267, 2546, 5105, 10224, 20463, 40942, 81901, 163820, 327659, 655338, 1310697, 2621416, 5242855, 10485734, 20971493, 41943012, 83886051, 167772130, 335544289, 671088608, 1342177247, 2684354526, 5368709085
Offset: 1
Some solutions for n=4:
0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 1 0
1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 1 1
Showing 1-7 of 7 results.
Comments