cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A002662 a(n) = 2^n - 1 - n*(n+1)/2.

Original entry on oeis.org

0, 0, 0, 1, 5, 16, 42, 99, 219, 466, 968, 1981, 4017, 8100, 16278, 32647, 65399, 130918, 261972, 524097, 1048365, 2096920, 4194050, 8388331, 16776915, 33554106, 67108512, 134217349, 268435049, 536870476, 1073741358, 2147483151, 4294966767, 8589934030
Offset: 0

Views

Author

Keywords

Comments

Number of subsets with at least 3 elements of an n-element set.
For n>4, number of simple rank-(n-1) matroids over S_n.
Number of non-interval subsets of {1,2,3,...,n} (cf. A000124). - Jose Luis Arregui (arregui(AT)unizar.es), Jun 27 2006
The partial sums of the second diagonal of A008292 or third column of A123125. - Tom Copeland, Sep 09 2008
a(n) is the number of binary sequences of length n having at least three 0's. - Geoffrey Critzer, Feb 11 2009
Starting with "1" = eigensequence of a triangle with the tetrahedral numbers (1, 4, 10, 20, ...) as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010
a(n) is also the number of crossing set partitions of [n+1] with two blocks. - Peter Luschny, Apr 29 2011
The Kn24 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence minus the three leading zeros. - Johannes W. Meijer, Aug 14 2011
From L. Edson Jeffery, Dec 28 2011: (Start)
Nonzero terms of this sequence can be found from the row sums of the fourth sub-triangle extracted from Pascal's triangle as indicated below by braces:
1;
1, 1;
1, 2, 1;
{1}, 3, 3, 1;
{1, 4}, 6, 4, 1;
{1, 5, 10}, 10, 5, 1;
{1, 6, 15, 20}, 15, 6, 1;
... (End)
Partial sums of A000295 (Eulerian Numbers, Column 2).
Second differences equal 2^(n-2) - 1, for n >= 4. - Richard R. Forberg, Jul 11 2013
Starting (0, 0, 1, 5, 16, ...) is the binomial transform of (0, 0, 1, 2, 2, 2, ...). - Gary W. Adamson, Jul 27 2015
a(n - 1) is the rank of the divisor class group of the moduli space of stable rational curves with n marked points, see Keel p. 550. - Harry Richman, Aug 10 2024

Examples

			a(4) = 5 is the number of crossing set partitions of {1,2,..,5}, card{13|245, 14|235, 24|135, 25|134, 35|124}. - _Peter Luschny_, Apr 29 2011
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A055248(n,3).
First differences are A000295.
Cf. also A000290, A001045.

Programs

Formula

G.f.: x^3/((1-2*x)*(1-x)^3).
a(n) = Sum_{k=0..n} binomial(n,k+3) = Sum_{k=3..n} binomial(n,k). - Paul Barry, Jul 30 2004
a(n+1) = 2*a(n) + binomial(n,2). - Paul Barry, Aug 23 2004
(1, 5, 16, 42, 99, ...) = binomial transform of (1, 4, 7, 8, 8, 8, ...). - Gary W. Adamson, Sep 30 2007
E.g.f.: exp(x)*(exp(x)-x^2/2-x-1). - Geoffrey Critzer, Feb 11 2009
a(n) = n - 2 + 3*a(n-1) - 2*a(n-2), for n >= 2. - Richard R. Forberg, Jul 11 2013
For n>1, a(n) = (1/4)*Sum_{k=1..n-2} 2^k*(n-k-1)*(n-k). For example, (1/4)*(2^1*(4*5) + 2^2*(3*4) + 2^3*(2*3) + 2^4*(1*2)) = 168/4 = 42. - J. M. Bergot, May 27 2014 [edited by Danny Rorabaugh, Apr 19 2015]
Convolution of A001045 and (A000290 shifted by one place). - Oboifeng Dira, Aug 16 2016
a(n) = Sum_{k=1..n-2} Sum_{i=1..n} (n-k-1) * C(k,i). - Wesley Ivan Hurt, Sep 19 2017
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n > 3. - Chai Wah Wu, Apr 03 2021
a(n) = a(n-1) + 1 + A000247(n-1). - Harry Richman, Aug 13 2024

A008299 Triangle T(n,k) of associated Stirling numbers of second kind, n >= 2, 1 <= k <= floor(n/2).

Original entry on oeis.org

1, 1, 1, 3, 1, 10, 1, 25, 15, 1, 56, 105, 1, 119, 490, 105, 1, 246, 1918, 1260, 1, 501, 6825, 9450, 945, 1, 1012, 22935, 56980, 17325, 1, 2035, 74316, 302995, 190575, 10395, 1, 4082, 235092, 1487200, 1636635, 270270, 1, 8177, 731731, 6914908, 12122110
Offset: 2

Views

Author

Keywords

Comments

T(n,k) is the number of set partitions of [n] into k blocks of size at least 2. Compare with A008277 (blocks of size at least 1) and A059022 (blocks of size at least 3). See also A200091. Reading the table by diagonals gives A134991. The row generating polynomials are the Mahler polynomials s_n(-x). See [Roman, 4.9]. - Peter Bala, Dec 04 2011
Row n gives coefficients of moments of Poisson distribution about the mean expressed as polynomials in lambda [Haight]. The coefficients of the moments about the origin are the Stirling numbers of the second kind, A008277. - N. J. A. Sloane, Jan 24 2020
Rows are of lengths 1,1,2,2,3,3,..., a pattern typical of matrices whose diagonals are rows of another lower triangular matrix--in this instance those of A134991. - Tom Copeland, May 01 2017
For a relation to decomposition of spin correlators see Table 2 of the Delfino and Vito paper. - Tom Copeland, Nov 11 2012

Examples

			There are 3 ways of partitioning a set N of cardinality 4 into 2 blocks each of cardinality at least 2, so T(4,2)=3.
Table begins:
  1;
  1;
  1,    3;
  1,   10;
  1,   25,     15;
  1,   56,    105;
  1,  119,    490,     105;
  1,  246,   1918,    1260;
  1,  501,   6825,    9450,      945;
  1, 1012,  22935,   56980,    17325;
  1, 2035,  74316,  302995,   190575,   10395;
  1, 4082, 235092, 1487200,  1636635,  270270;
  1, 8177, 731731, 6914908, 12122110, 4099095, 135135;
  ...
Reading the table by diagonals produces the triangle A134991.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
  • Frank Avery Haight, "Handbook of the Poisson distribution," John Wiley, 1967. See pages 6,7, but beware of errors. [Haight on page 7 gives five different ways to generate these numbers (see link)].
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
  • S. Roman, The Umbral Calculus, Dover Publications, New York (2005), pp. 129-130.

Crossrefs

Rows: A000247 (k=2), A000478 (k=3), A058844 (k=4).
Row sums: A000296, diagonal: A259877.

Programs

  • Maple
    A008299 := proc(n,k) local i,j,t1; if k<1 or k>floor(n/2) then t1 := 0; else
    t1 := add( (-1)^i*binomial(n, i)*add( (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), j = 0..k - i), i = 0..k); fi; t1; end; # N. J. A. Sloane, Dec 06 2016
    G:= exp(lambda*(exp(x)-1-x)):
    S:= series(G,x,21):
    seq(seq(coeff(coeff(S,x,n)*n!,lambda,k),k=1..floor(n/2)),n=2..20); # Robert Israel, Jan 15 2020
    T := proc(n, k) option remember; if n < 0 then return 0 fi; if k = 0 then return k^n fi; k*T(n-1, k) + (n-1)*T(n-2, k-1) end:
    seq(seq(T(n,k), k=1..n/2), n=2..9); # Peter Luschny, Feb 11 2021
  • Mathematica
    t[n_, k_] := Sum[ (-1)^i*Binomial[n, i]*Sum[ (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), {j, 0, k - i}], {i, 0, k}]; Flatten[ Table[ t[n, k], {n, 2, 14}, {k, 1, Floor[n/2]}]] (* Jean-François Alcover, Oct 13 2011, after David Wasserman *)
    Table[Sum[Binomial[n, k - j] StirlingS2[n - k + j, j] (-1)^(j + k), {j, 0, k}], {n, 15}, {k, n/2}] // Flatten (* Eric W. Weisstein, Nov 13 2018 *)
  • PARI
    {T(n, k) = if( n < 1 || 2*k > n, n==0 && k==0, sum(i=0, k, (-1)^i * binomial( n, i) * sum(j=0, k-i, (-1)^j * (k-i-j)^(n-i) / (j! * (k-i-j)!))))}; /* Michael Somos, Oct 19 2014 */
    
  • PARI
    { T(n,k) = sum(i=0,min(n,k), (-1)^i * binomial(n,i) * stirling(n-i,k-i,2) ); } /* Max Alekseyev, Feb 27 2017 */

Formula

T(n,k) = abs(A137375(n,k)).
E.g.f. with additional constant 1: exp(t*(exp(x)-1-x)) = 1 + t*x^2/2! + t*x^3/3! + (t+3*t^2)*x^4/4! + ....
Recurrence relation: T(n+1,k) = k*T(n,k) + n*T(n-1,k-1).
T(n,k) = A134991(n-k,k); A134991(n,k) = T(n+k,k).
More generally, if S_r(n,k) gives the number of set partitions of [n] into k blocks of size at least r then we have the recurrence S_r(n+1,k) = k*S_r(n,k) + binomial(n,r-1)*S_r(n-r+1,k-1) (for this sequence, r=2), with associated e.g.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*(t^n/n!) = exp(u*(e^t - Sum_{i=0..r-1} t^i/i!)).
T(n,k) = Sum_{i=0..k} (-1)^i*binomial(n, i)*Sum_{j=0..k-i} (-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!). - David Wasserman, Jun 13 2007
G.f.: (R(0)-1)/(x^2*y), where R(k) = 1 - (k+1)*y*x^2/( (k+1)*y*x^2 - (1-k*x)*(1-x-k*x)/R(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
T(n,k) = Sum_{i=0..min(n,k)} (-1)^i * binomial(n,i) * Stirling2(n-i,k-i) = Sum_{i=0..min(n,k)} (-1)^i * A007318(n,i) * A008277(n-i,k-i). - Max Alekseyev, Feb 27 2017
T(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, n-k-j) where E2(n, k) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 11 2021

Extensions

Formula and cross-references from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Edited by Peter Bala, Dec 04 2011
Edited by N. J. A. Sloane, Jan 24 2020

A134991 Triangle of Ward numbers T(n,k) read by rows.

Original entry on oeis.org

1, 1, 3, 1, 10, 15, 1, 25, 105, 105, 1, 56, 490, 1260, 945, 1, 119, 1918, 9450, 17325, 10395, 1, 246, 6825, 56980, 190575, 270270, 135135, 1, 501, 22935, 302995, 1636635, 4099095, 4729725, 2027025, 1, 1012, 74316, 1487200, 12122110, 47507460, 94594500, 91891800, 34459425
Offset: 1

Views

Author

Tom Copeland, Feb 05 2008

Keywords

Comments

This is the triangle of associated Stirling numbers of the second kind, A008299, read along the diagonals.
This is also a row-reversed version of A181996 (with an additional leading 1) - see the table on p. 92 in the Ward reference. A134685 is a refinement of the Ward table.
The first and second diagonals are A001147 and A000457 and appear in the diagonals of several OEIS entries. The polynomials also appear in Carlitz (p. 85), Drake et al. (p. 8) and Smiley (p. 7).
First few polynomials (with a different offset) are
P(0,t) = 0
P(1,t) = 1
P(2,t) = t
P(3,t) = t + 3*t^2
P(4,t) = t + 10*t^2 + 15*t^3
P(5,t) = t + 25*t^2 + 105*t^3 + 105*t^4
These are the "face" numbers of the tropical Grassmannian G(2,n),related to phylogenetic trees (with offset 0 beginning with P(2,t)). Corresponding h-vectors are A008517. - Tom Copeland, Oct 03 2011
A133314 applied to the derivative of A(x,t) implies (a.+b.)^n = 0^n, for (b_n)=P(n+1,t) and (a_0)=1, (a_1)=-t, and (a_n)=-(1+t) P(n,t) otherwise. E.g., umbrally, (a.+b.)^2 = a_2*b_0 + 2 a_1*b_1 + a_0*b_2 = 0. - Tom Copeland, Oct 08 2011
Beginning with the second column, the rows give the faces of the Whitehouse simplicial complex with the fourth-order complex being three isolated vertices and the fifth-order being the Petersen graph with 10 vertices and 15 edges (cf. Readdy). - Tom Copeland, Oct 03 2014
Stratifications of smooth projective varieties which are fine moduli spaces for stable n-pointed rational curves. Cf. pages 20 and 30 of the Kock and Vainsencher reference and references in A134685. - Tom Copeland, May 18 2017
Named after the American mathematician Morgan Ward (1901-1963). - Amiram Eldar, Jun 26 2021

Examples

			Triangle begins:
  1
  1   3
  1  10   15
  1  25  105  105
  1  56  490 1260   945
  1 119 1918 9450 17325 10395
  ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, page 222.

Crossrefs

The same as A269939, with column k = 0 removed.
A reshaped version of the triangle of associated Stirling numbers of the second kind, A008299.
A181996 is the mirror image.
Columns k = 2, 3, 4 are A000247, A000478, A058844.
Diagonal k = n is A001147.
Diagonal k = n - 1 is A000457.
Row sums are A000311.
Alternating row sums are signed factorials (-1)^(n-1)*A000142(n).
Cf. A112493.

Programs

  • Mathematica
    t[n_, k_] := Sum[(-1)^i*Binomial[n, i]*Sum[(-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!), {j, 0, k-i}], {i, 0, k}]; row[n_] := Table[t[k, k-n], {k, n+1, 2*n}]; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Apr 23 2014, after A008299 *)

Formula

E.g.f. for the polynomials is A(x,t) = (x-t)/(t+1) + T{ (t/(t+1)) * exp[(x-t)/(t+1)] }, where T(x) is the Tree function, the e.g.f. of A000169. The compositional inverse in x (about x = 0) is B(x) = x + -t * [exp(x) - x - 1]. Special case t = 1 gives e.g.f. for A000311. These results are a special case of A134685 with u(x) = B(x).
From Tom Copeland, Oct 26 2008: (Start)
Umbral-Sheffer formalism gives, for m a positive integer and u = t/(t+1),
[P(.,t)+Q(.,x)]^m = [m Q(m-1,x) - t Q(m,x)]/(t+1) + sum(n>=1) { n^(n-1)[u exp(-u)]^n/n! [n/(t+1)+Q(.,x)]^m }, when the series is convergent for a sequence of functions Q(n,x).
Check: With t=1; Q(n,x)=0^n, for n>=0; and Q(-1,x)=0, then [P(.,1)+Q(.,x)]^m = P(m,1) = A000311(m).
(End)
Let h(x,t) = 1/(dB(x)/dx) = 1/(1-t*(exp(x)-1)), an e.g.f. in x for row polynomials in t of A019538, then the n-th row polynomial in t of the table A134991, P(n,t), is given by ((h(x,t)*d/dx)^n)x evaluated at x=0, i.e., A(x,t) = exp(x*P(.,t)) = exp(x*h(u,t)*d/du) u evaluated at u=0. Also, dA(x,t)/dx = h(A(x,t),t). - Tom Copeland, Sep 05 2011
The polynomials (1+t)/t*P(n,t) are the row polynomials of A112493. Let f(x) = (1+x)/(1-x*t). Then for n >= 0, P(n+1,t) is given by t/(1+t)*(f(x)*d/dx)^n(f(x)) evaluated at x = 0. - Peter Bala, Sep 30 2011
From Tom Copeland, Oct 04 2011: (Start)
T(n,k) = (k+1)*T(n-1,k) + (n+k+1)*T(n-1,k-1) with starting indices n=0 and k=0 beginning with P(2,t) (as suggested by a formula of David Speyer on MathOverflow).
T(n,k) = k*T(n-1,k) + (n+k-1)*T(n-1,k-1) with starting indices n=1 and k=1 of table (cf. Smiley above and Riordin ref.[10] therein).
P(n,t) = (1/(1+t))^n * Sum_{k>=1} k^(n+k-1)*(u*exp(-u))^k / k! with u=(t/(t+1)) for n>1; therefore, Sum_{k>=1} (-1)^k k^(n+k-1) x^k/k! = [1+LW(x)]^(-n) P{n,-LW(x)/[1+LW(x)]}, with LW(x) the Lambert W-Fct.
T(n,k) = Sum_{i=0..k} ((-1)^i binomial(n+k,i) Sum_{j=0..k-i} (-1)^j (k-i-j)^(n+k-i)/(j!(k-i-j)!)) from relation to A008299. (End)
The e.g.f. A(x,t) = -v * ( Sum_{j=>1} D(j-1,u) (-z)^j / j! ) where u = (x-t)/(1+t), v = 1+u, z = x/((1+t) v^2) and D(j-1,u) are the polynomials of A042977. dA/dx = 1/((1+t)(v-A)) = 1/(1-t*(exp(A)-1)). - Tom Copeland, Oct 06 2011
The general results on the convolution of the refined partition polynomials of A134685, with u_1 = 1 and u_n = -t otherwise, can be applied here to obtain results of convolutions of these polynomials. - Tom Copeland, Sep 20 2016
E.g.f.: C(u,t) = (u-t)/(1+t) - W( -((t*exp((u-t)/(1+t)))/(1+t)) ), where W is the principal value of the Lambert W-function. - Cheng Peng, Sep 11 2021
The function C(u,t) in the previous formula by Peng is precisely the function A(u,t) given in the initial 2008 formula of this section and the Oct 06 2011 formula from Copeland. As noted in A000169, Euler's tree function is T(x) = -LambertW(-x), where W(x) is the principal branch of Lambert's function, and T(x) is the e.g.f. of A000169. - Tom Copeland, May 13 2022

Extensions

Reference to A181996 added by N. J. A. Sloane, Apr 05 2012
Further edits by N. J. A. Sloane, Jan 24 2020

A107907 Numbers having consecutive zeros or consecutive ones in binary representation.

Original entry on oeis.org

3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, May 28 2005

Keywords

Comments

Also positive integers whose binary expansion has cuts-resistance > 1. For the operation of shortening all runs by 1, cuts-resistance is the number of applications required to reach an empty word. - Gus Wiseman, Nov 27 2019

Examples

			From _Gus Wiseman_, Nov 27 2019: (Start)
The sequence of terms together with their binary expansions begins:
    3:      11
    4:     100
    6:     110
    7:     111
    8:    1000
    9:    1001
   11:    1011
   12:    1100
   13:    1101
   14:    1110
   15:    1111
   16:   10000
   17:   10001
   18:   10010
(End)
		

Crossrefs

Union of A003754 and A003714.
Complement of A000975.

Programs

  • Mathematica
    Select[Range[100],MatchQ[IntegerDigits[#,2],{_,x_,x_,_}]&] (* Gus Wiseman, Nov 27 2019 *)
    Select[Range[80],SequenceCount[IntegerDigits[#,2],{x_,x_}]>0&] (* or *) Complement[Range[85],Table[FromDigits[PadRight[{},n,{1,0}],2],{n,7}]] (* Harvey P. Dale, Jul 31 2021 *)
  • Python
    def A107907(n): return (m:=n-2+(k:=(3*n+3).bit_length()))+(m>=(1<Chai Wah Wu, Apr 21 2025

Formula

a(A000247(n)) = A000225(n+2).
a(A000295(n+2)) = A000079(n+2).
a(A000325(n+2)) = A000051(n+2) for n>0.
a(n) = m+1 if m >= floor(2^k/3) otherwise a(n) = m where k = floor(log_2(3*(n+1))) and m = n-2+k. - Chai Wah Wu, Apr 21 2025

Extensions

Offset changed to 1 by Chai Wah Wu, Apr 21 2025

A265901 Square array read by descending antidiagonals: A(n,1) = A188163(n), and for k > 1, A(n,k) = A087686(1+A(n,k-1)).

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 8, 15, 12, 6, 16, 31, 27, 14, 9, 32, 63, 58, 30, 21, 10, 64, 127, 121, 62, 48, 24, 11, 128, 255, 248, 126, 106, 54, 26, 13, 256, 511, 503, 254, 227, 116, 57, 29, 17, 512, 1023, 1014, 510, 475, 242, 120, 61, 38, 18, 1024, 2047, 2037, 1022, 978, 496, 247, 125, 86, 42, 19, 2048, 4095, 4084, 2046, 1992, 1006, 502, 253, 192, 96, 45, 20
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

Square array read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
The topmost row (row 1) of the array is A000079 (powers of 2), and in general each row 2^k contains the sequence (2^n - k), starting from the term (2^(k+1) - k). This follows from the properties (3) and (4) of A004001 given on page 227 of Kubo & Vakil paper (page 3 in PDF).
Moreover, each row 2^k - 1 (for k >= 2) contains the sequence 2^n - n - (k-2), starting from the term (2^(k+1) - (2k-1)). To see why this holds, consider the definitions of sequences A162598 and A265332, the latter which also illustrates how the frequency counts Q_n for A004001 are recursively constructed (in the Kubo & Vakil paper).

Examples

			The top left corner of the array:
   1,  2,   4,   8,  16,   32,   64,  128,  256,   512,  1024, ...
   3,  7,  15,  31,  63,  127,  255,  511, 1023,  2047,  4095, ...
   5, 12,  27,  58, 121,  248,  503, 1014, 2037,  4084,  8179, ...
   6, 14,  30,  62, 126,  254,  510, 1022, 2046,  4094,  8190, ...
   9, 21,  48, 106, 227,  475,  978, 1992, 4029,  8113, 16292, ...
  10, 24,  54, 116, 242,  496, 1006, 2028, 4074,  8168, 16358, ...
  11, 26,  57, 120, 247,  502, 1013, 2036, 4083,  8178, 16369, ...
  13, 29,  61, 125, 253,  509, 1021, 2045, 4093,  8189, 16381, ...
  17, 38,  86, 192, 419,  894, 1872, 3864, 7893, 16006, 32298, ...
  18, 42,  96, 212, 454,  950, 1956, 3984, 8058, 16226, 32584, ...
  19, 45, 102, 222, 469,  971, 1984, 4020, 8103, 16281, 32650, ...
  20, 47, 105, 226, 474,  977, 1991, 4028, 8112, 16291, 32661, ...
  22, 51, 112, 237, 490,  999, 2020, 4065, 8158, 16347, 32728, ...
  23, 53, 115, 241, 495, 1005, 2027, 4073, 8167, 16357, 32739, ...
  25, 56, 119, 246, 501, 1012, 2035, 4082, 8177, 16368, 32751, ...
  28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, ...
  ...
		

Crossrefs

Inverse permutation: A267102.
Transpose: A265903.
Cf. A265900 (main diagonal).
Cf. A162598 (row index of n in array), A265332 (column index of n in array).
Column 1: A188163.
Column 2: A266109.
Row 1: A000079 (2^n).
Row 2: A000225 (2^n - 1, from 3 onward).
Row 3: A000325 (2^n - n, from 5 onward).
Row 4: A000918 (2^n - 2, from 6 onward).
Row 5: A084634 (?, from 9 onward).
Row 6: A132732 (2^n - 2n + 2, from 10 onward).
Row 7: A000295 (2^n - n - 1, from 11 onward).
Row 8: A036563 (2^n - 3).
Row 9: A084635 (?, from 17 onward).
Row 12: A048492 (?, from 20 onward).
Row 13: A249453 (?, from 22 onward).
Row 14: A183155 (2^n - 2n + 1, from 23 onward. Cf. also A244331).
Row 15: A000247 (2^n - n - 2, from 25 onward).
Row 16: A028399 (2^n - 4).
Cf. also permutations A267111, A267112.

Programs

Formula

For the first column k=1, A(n,1) = A188163(n), for columns k > 1, A(n,k) = A087686(1+A(n,k-1)).

A000478 Number of ways of placing n labeled balls into 3 indistinguishable boxes with at least 2 balls in each box.

Original entry on oeis.org

15, 105, 490, 1918, 6825, 22935, 74316, 235092, 731731, 2252341, 6879678, 20900922, 63259533, 190957923, 575363776, 1731333808, 5205011031, 15638101281, 46962537810, 140988276150, 423174543025, 1269959836015, 3810785476980, 11434235478348, 34306598748315, 102927849307725
Offset: 6

Views

Author

Keywords

Comments

Associated Stirling numbers.
From Enrique Navarrete, May 24 2025: (Start)
6*a(n) is the number of ternary words of length n that contain at least two of each of the symbols of the alphabet. For example, 6*a(6) counts the 90 permutations of 001122.
2*a(n+1) is the number of ternary strings of length n that contain at least one 0 and at least two 1's and at least two 2's. For example, for n = 6, 2*a(7) counts the 90 permutations of 001122, the 60 permutations of 011122, and the 60 permutations of 011222. (End)

Examples

			a(6) = 6!/(2!*2!*2!*3!) = 15.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 296.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000247 (2 boxes), A058844 (4 boxes).

Programs

  • Mathematica
    Table[(1+n+n^2)/2-(1/2+n/4)*2^n+3^n/6,{n,6,30}] (* or *) LinearRecurrence[ {10,-40,82,-91,52,-12},{15,105,490,1918,6825,22935},25] (* Harvey P. Dale, Jul 17 2011 *)
    offset = 6; terms = 26; egf = (Exp[x]-1-x)^3/3!; Drop[CoefficientList[egf + O[x]^(terms+offset), x]*Range[0, terms+offset-1]!, offset] (* Jean-François Alcover, May 07 2017 *)
  • PARI
    Vec(x^6*(12*x^3-40*x^2+45*x-15)/((1-x)^3*(1-2*x)^2*(3*x-1))+O(x^66)) /* Joerg Arndt, Apr 10 2013 */
    
  • Python
    # based on Vladimir Kruchinin's formula
    def A000478():
        a = 15; n = 7; z = 4; s = 15;
        while True:
            yield a
            z = 2*z; s += n*(z-2) + 3; a = 3*a + s; n += 1
    a = A000478(); print([next(a) for  in range(6, 32)]) # _Peter Luschny, Oct 04 2018

Formula

E.g.f.: ((exp(x) - 1 - x)^3)/3!.
G.f.: x^6*(12*x^3 - 40*x^2 + 45*x - 15)/((1 - x)^3*(1 - 2*x)^2*(3*x - 1)). - Simon Plouffe in his 1992 dissertation
a(n) = (1+n+n^2)/2 - (1/2 + n/4)*2^n + 3^n/6. - Michael Steyer (m.steyer(AT)osram.de), Jan 09 2005
a(n) = 10*a(n-1) - 40*a(n-2) + 82*a(n-3) - 91*a(n-4) + 52*a(n-5) - 12*a(n-6), n > 11. - Harvey P. Dale based on Michael Steyer's formula, Jul 17 2011
a(n) = 3*a(n-1) + (2^(n-3)-n+1)*(n-1), a(n)=0, n < 6. - Vladimir Kruchinin, Oct 04 2018

Extensions

Additional comments from Michael Steyer, Dec 02 2000
More terms from James Sellers, Dec 06 2000
More terms from Joerg Arndt, Apr 10 2013

A052515 Number of ordered pairs of complementary subsets of an n-set with both subsets of cardinality at least 2.

Original entry on oeis.org

0, 0, 0, 0, 6, 20, 50, 112, 238, 492, 1002, 2024, 4070, 8164, 16354, 32736, 65502, 131036, 262106, 524248, 1048534, 2097108, 4194258, 8388560, 16777166, 33554380, 67108810, 134217672, 268435398, 536870852, 1073741762
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of binary sequences of length n having at least two 0's and at least two 1's. a(4)=6 because there are six binary sequences of length four that have two or more 0's and two or more 1's: 0011, 0101, 0110, 1100, 1010, 1001. - Geoffrey Critzer, Feb 11 2009
For n>3, a(n) is also the sum of those terms from the n-th row of Pascal's triangle which also occur in A006987: 6, 10+10, 15+20+15, 21+35+35+21,... - Douglas Latimer, Apr 02 2012
From Dennis P. Walsh, Apr 09 2013: (Start)
Column 2 of triangle A200091.
Number of doubly-surjective functions f:[n]->[2].
Number of ways to distribute n different toys to 2 children so that each child gets at least 2 toys. (End)
a(n) is the number of subsets of an n-set of cardinality k with 2 <= k <= n - 2. - Rick L. Shepherd, Dec 05 2014

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (Exp(x)-1-x)^2 )); [0,0,0,0] cat [Factorial(n+3)*b[n]: n in [1..m-5]]; // G. C. Greubel, May 13 2019
    
  • Maple
    Pairs spec := [S,{S=Prod(B,B),B=Set(Z,2 <= card)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Join[{0,0,0}, LinearRecurrence[{4,-5,2}, {0,6,20}, 35]] (* G. C. Greubel, May 13 2019 *)
    With[{nn=30},CoefficientList[Series[(Exp[x]-x-1)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 29 2023 *)
  • PARI
    concat([0,0,0,0],Vec((6-4*x)/(1-x)^2/(1-2*x)+O(x^35))) \\ Charles R Greathouse IV, Apr 03 2012
    
  • PARI
    x='x+O('x^35); concat([0,0,0,0],Vec(serlaplace((exp(x)-x-1)^2))) \\ Joerg Arndt, Apr 10 2013
    
  • Sage
    (2*x^4*(3-2*x)/((1-x)^2*(1-2*x))).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019

Formula

E.g.f.: (exp(x) - x - 1)^2. - Joerg Arndt, Apr 10 2013
n*a(n+2) - (1+3*n)*a(n+1) + 2(1+n)*a(n) = 0, with a(0) = .. = a(3) = 0, a(4) = 6.
For n>2, a(n) = 2^n - 2n - 2 = A005803(n) - 2 = A070313(n) - 1 = A071099(n) - A071099(n+1) + 1 = 2*A000247(n-1). - Ralf Stephan, Jan 11 2004
G.f.: 2*x^4*(3-2*x)/((1-x)^2*(1-2*x)). - Colin Barker, Feb 19 2012

Extensions

More terms from Ralf Stephan, Jan 11 2004
Definition corrected by Rainer Rosenthal, Feb 12 2010
Definition further clarified by Rick L. Shepherd, Dec 05 2014

A058844 Number of ways of placing n labeled balls into 4 indistinguishable boxes with at least 2 balls in each box.

Original entry on oeis.org

105, 1260, 9450, 56980, 302995, 1487200, 6914908, 30950920, 134779645, 575156036, 2417578670, 10046531276, 41388056231, 169371383384, 689568172832, 2796362035104, 11305163394129, 45595968007260, 183557935474290, 737897437077060, 2963015460969915
Offset: 8

Views

Author

Michael Steyer, Dec 02 2000

Keywords

Examples

			a(8) = 8!/(2!*2!*2!*2!*4!) = 105.
		

Crossrefs

Cf. A000247 (2 boxes), A000478 (3 boxes).

Programs

  • Magma
    [(4^n-3^(n-1)*(4*n+12)+2^(n-1)*(12+9*n+3*n^2)-4*n^3-8*n-4)/24 : n in [8..25]]; // Wesley Ivan Hurt, Oct 28 2014
    
  • Maple
    A058844:=n->(4^n-3^(n-1)*(4*n+12)+2^(n-1)*(12+9*n+3*n^2)-4*n^3-8*n-4)/24: seq(A058844(n), n=8..25); # Wesley Ivan Hurt, Oct 28 2014
  • Mathematica
    Table[(4^n - 3^(n - 1) (4 n + 12) + 2^(n - 1) (12 + 9 n + 3 n^2) - 4 n^3 - 8 n - 4)/24, {n, 8, 25}] (* Wesley Ivan Hurt, Oct 28 2014 *)
    offset = 8; terms = 21; egf = (Exp[x]-1-x)^4/4!; Drop[CoefficientList[egf + O[x]^(terms+offset), x]*Range[0, terms+offset-1]!, offset] (* Jean-François Alcover, May 07 2017 *)
  • PARI
    a(n)=(4^n - 3^(n-1)*(4*n+12) + 2^(n-1)*(12+9*n+3*n^2) - 4*n^3 - 8*n - 4)/24 \\ Charles R Greathouse IV, Oct 28 2014

Formula

E.g.f.: ((exp(x) - 1 - x)^4)/4!.
G.f.: x^8*(288*x^6 - 1560*x^5 + 3500*x^4 - 4130*x^3 + 2625*x^2 - 840*x + 105) / ((1 - x)^4*(1 - 2*x)^3*(1 - 3*x)^2*(1 - 4*x)).
a(n) = (4^n-3^(n-1)(4n+12)+2^(n-1)(12+9n+3n^2)-4n^3-8n-4)/24. - David Wasserman, Jun 06 2007

Extensions

More terms from James Sellers, Dec 06 2000

A213568 Rectangular array: (row n) = b**c, where b(h) = 2^(h-1), c(h) = n-1+h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 11, 7, 3, 26, 18, 10, 4, 57, 41, 25, 13, 5, 120, 88, 56, 32, 16, 6, 247, 183, 119, 71, 39, 19, 7, 502, 374, 246, 150, 86, 46, 22, 8, 1013, 757, 501, 309, 181, 101, 53, 25, 9, 2036, 1524, 1012, 628, 372, 212, 116, 60, 28, 10, 4083, 3059, 2035, 1267
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2012

Keywords

Comments

Principal diagonal: A213569
Antidiagonal sums: A047520
Row 1, (1,3,6,...)**(1,4,9,...): A125128
Row 2, (1,3,6,...)**(4,9,16,...): A095151
Row 3, (1,3,6,...)**(9,16,25,...): A000247
Row 4, (1,3,6,...)**(16,25,36...): A208638 (?)
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
  1...4....11...26....57....120
  2...7....18...41....88....183
  3...10...25...56....119...246
  4...13...32...71....150...309
  5...16...39...86....181...372
  6...19...46...101...212...435
		

Crossrefs

Cf. A213500.

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> 2^(n-k+1)*(k+1) -(n+2) ))); # G. C. Greubel, Jul 26 2019
  • Magma
    [2^(n-k+1)*(k+1) -(n+2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 26 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= 2^(n-1); c[n_]:= n;
    t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_]:= Table[t[n, k], {k, 1, 60}]  (* A213568 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213569 *)
    s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A047520 *)
    (* Second program *)
    Table[2^(n-k+1)*(k+1) -(n+2), {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 26 2019 *)
  • PARI
    for(n=1,12, for(k=1,n, print1(2^(n-k+1)*(k+1) -(n+2), ", "))) \\ G. C. Greubel, Jul 26 2019
    
  • Sage
    [[2^(n-k+1)*(k+1) -(n+2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 26 2019
    

Formula

T(n,k) = 4*T(n,k-1) - 5*T(n,k-2) + 2*T(n,k-3). - corrected by Clark Kimberling, Sep 03 2023
G.f. for row n: f(x)/g(x), where f(x) = n - (n - 1)*x and g(x) = (1 - 2*x)*(1 - x)^2.
T(n,k) = 2^k*(n + 1) - (n + k + 1). - G. C. Greubel, Jul 26 2019

A094002 a(n+3) = 3*a(n+2) - 2*a(n+1) + 1 with a(0)=1, a(1)=5.

Original entry on oeis.org

1, 5, 14, 33, 72, 151, 310, 629, 1268, 2547, 5106, 10225, 20464, 40943, 81902, 163821, 327660, 655339, 1310698, 2621417, 5242856, 10485735, 20971494, 41943013, 83886052, 167772131, 335544290, 671088609, 1342177248, 2684354527
Offset: 0

Views

Author

Gary W. Adamson, May 30 2004

Keywords

Comments

A sequence generated from the Bell difference row triangle (as a matrix).
Companion sequence A095151 has the same recursion rule but is generated from the multiplier [1 0 0] instead of [1 1 1].
a(n) is the sum of the terms in row n of a triangle with first column T(n,0) = (n+1)*(n+2)/2 and diagonal T(n,n) = n+1; T(i,j) = T(i-1,j-1) + T(i-1,j). - J. M. Bergot, Jun 26 2018

Examples

			a(9) = 2547 = 3*a(8) - 2*a(7) + 1 = 3*1268 - 2*629 + 1 = 3804 - 1258 + 1.
		

Crossrefs

Programs

  • Magma
    [5*2^n -(n+4): n in [0..35]]; // G. C. Greubel, Dec 27 2021
    
  • Mathematica
    a[n_]:= (MatrixPower[{{1,0,0}, {1,1,0}, {2,1,2}}, n].{{1}, {1}, {1}})[[3, 1]]; Table[a[n], {n, 35}] (* Robert G. Wilson v, Jun 01 2004 *)
    LinearRecurrence[{4,-5,2},{1,5,14},40] (* Harvey P. Dale, Jan 20 2021 *)
  • PARI
    vector(35, n, 5*2^(n-1) -(n+3)) \\ Harry J. Smith, Jun 16 2009; edited Dec 27 2021
    
  • Sage
    [5*2^n -(n+4) for n in (0..35)] # G. C. Greubel, Dec 27 2021

Formula

Let M = a 3 X 3 matrix formed from A095149 rows (fill in with zeros): {1, 0, 0 ; 1, 1, 0 ; 2, 1, 2}. Then M^n * {1, 1, 1} = {1, n+1, a(n)}.
a(n) = 5*2^n - n - 4 = 2*a(n-1) + n + 2 = A000247(n) + A000079(n). - Henry Bottomley, Oct 25 2004
From Colin Barker, Apr 23 2012: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
G.f.: (1+x-x^2)/((1-x)^2*(1-2*x)). (End)

Extensions

More terms from Robert G. Wilson v, Jun 01 2004
Showing 1-10 of 20 results. Next