A005803
Second-order Eulerian numbers: a(n) = 2^n - 2*n.
Original entry on oeis.org
1, 0, 0, 2, 8, 22, 52, 114, 240, 494, 1004, 2026, 4072, 8166, 16356, 32738, 65504, 131038, 262108, 524250, 1048536, 2097110, 4194260, 8388562, 16777168, 33554382, 67108812, 134217674, 268435400, 536870854, 1073741764, 2147483586
Offset: 0
G.f. = 1 + 2*x^3 + 8*x^4 + 22*x^5 + 52*x^6 + 114*x^7 + 240*x^8 + 494*x^9 + ...
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..500
- S. Bilotta, E. Grazzini, and E. Pergola, Enumeration of Two Particular Sets of Minimal Permutations, J. Int. Seq. 18 (2015) 15.10.2.
- I. Gessel and R. P. Stanley, Stirling polynomials, J. Combin. Theory, A 24 (1978), 24-33.
- Jim Haglund and Mirko Visontai, Stable multivariate Eulerian polynomials and generalized Stirling permutations.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004).
- Sandi Klavžar, Uroš Milutinović and Ciril Petr, Hanoi graphs and some classical numbers, Expo. Math. 23 (2005), no. 4, 371-378.
- James McClung, Constructions and Applications of W-States, Bachelor Thesis, Worcester Polytechnic Institute (2020).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Sam Spiro, Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic, arXiv preprint arXiv:1810.00993 [math.CO], 2018 (A000246); Discrete Math, 343 (2020), article 111869.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Equivalent to second column of
A008517.
Equals for n =>3 the third right hand column of
A163936.
-
a005803 n = 2 ^ n - 2 * n
a005803_list = 1 : f 1 [0, 2 ..] where
f x (z:zs@(z':_)) = y : f y zs where y = (x + z) * 2 - z'
-- Reinhard Zumkeller, Jan 19 2014
-
[2^n-2*n: n in [0..30]]; // Wesley Ivan Hurt, Jun 04 2014
-
A005803:=-2*z/(2*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence except for three leading terms
-
Table[2^n-2n,{n,0,50}] (* or *) LinearRecurrence[{4,-5,2},{1,0,0},51] (* Harvey P. Dale, May 21 2011 *)
-
{a(n) = if( n<0, 0, 2^n - 2*n)}; /* Michael Somos, Oct 13 2002 */
A200091
The number of ways of putting n labeled items into k labeled boxes so that each box receives at least 2 objects.
Original entry on oeis.org
1, 1, 1, 6, 1, 20, 1, 50, 90, 1, 112, 630, 1, 238, 2940, 2520, 1, 492, 11508, 30240, 1, 1002, 40950, 226800, 113400, 1, 2024, 137610, 1367520, 2079000, 1, 4070, 445896, 7271880, 22869000, 7484400, 1, 8164, 1410552, 35692800, 196396200, 194594400, 1, 16354
Offset: 2
Table begins
n |k=1 2 3 4
----+-------------------
2 | 1
3 | 1
4 | 1 6
5 | 1 20
6 | 1 50 90
7 | 1 112 630
8 | 1 238 2940 2520
9 | 1 492 11508 30240
...
T(4,2) = 6: The arrangements of 4 objects into 2 boxes { } and [ ] so that each box contains at least 2 items are {1,2}[3,4], {1,3}[2,4], {2,3}[1,4] and the 3 other possibilities where the contents of a pair of boxes are swapped.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009, page 100-109.
-
Flat(List([2..14],n->List([1..Int(n/2)],k->Sum([0..k],j->(-1)^j*Binomial(k,j)*(Sum([0..j],i->Binomial(j,i)*(Binomial(n,i)*Factorial(i)*(k-j)^(n-i)))))))); # Muniru A Asiru, Jul 17 2018
-
seq(seq(eval(diff((exp(x)-x-1)^k,x$n),x=0),k=1..floor(n/2)),n=2..20); # Dennis P. Walsh, Apr 09 2013
T := proc(n,k) local r; k!* add(binomial(n,r)*(-1)^r*Stirling2(n-r,k-r), r=0..min(n,k)); end; # Marko Riedel, Mar 25 2022
-
t[n_, k_] := k! * Sum[ (-1)^i*Binomial[n, i] * Sum[ (-1)^j*(k - i - j)^(n - i) / (j!*(k - i - j)!), {j, 0, k - i}], {i, 0, k}]; Table[ t[n, k], {n, 2, 14}, {k, 1, n/2}] // Flatten (* Jean-François Alcover, Apr 10 2013 *)
A052516
Number of pairs of sets of cardinality at least 3.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 20, 70, 182, 420, 912, 1914, 3938, 8008, 16172, 32526, 65262, 130764, 261800, 523906, 1048154, 2096688, 4193796, 8388054, 16776614, 33553780, 67108160, 134216970
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (Exp(x) -1-x-x^2/2)^2 )); [0,0,0,0,0] cat [Factorial(n+5)*b[n]: n in [1..m-6]]; // G. C. Greubel, May 13 2019
-
Pairs spec := [S,{S=Prod(B,B),B=Set(Z,3 <= card)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
with (combstruct):ZL:=[S,{S=Sequence(U,card=r),U=Set(Z,card>=3)}, labeled]: seq(count(subs(r=2,ZL),size=m),m=0..20); # Zerinvary Lajos, Mar 09 2007
seq(max(0,2^n-n^2-n-2), n=0..40); # Dennis P. Walsh, Dec 09 2014
-
Table[Max[0,2^n-n^2-n-2],{n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011*)
-
a(n)=max(0,2^n-n^2-n-2) \\ Charles R Greathouse IV, Nov 20 2011
-
(2*x^6*(10-15*x+6*x^2)/((1-x)^3*(1-2*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019
A144394
Triangle read by rows (n >= 4, 0 <= k <= n - 4): row n gives the coefficients in the expansion of ((x + 1)^n - (x^n + n*x^(n - 1) + n*x + 1))/x^2.
Original entry on oeis.org
6, 10, 10, 15, 20, 15, 21, 35, 35, 21, 28, 56, 70, 56, 28, 36, 84, 126, 126, 84, 36, 45, 120, 210, 252, 210, 120, 45, 55, 165, 330, 462, 462, 330, 165, 55, 66, 220, 495, 792, 924, 792, 495, 220, 66, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91
Offset: 4
Triangle begins:
6;
10, 10;
15, 20, 15;
21, 35, 35, 21;
28, 56, 70, 56, 28;
36, 84, 126, 126, 84, 36;
45, 120, 210, 252, 210, 120, 45;
55, 165, 330, 462, 462, 330, 165, 55;
66, 220, 495, 792, 924, 792, 495, 220, 66;
78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78;
91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91;
105, 455, 1365, 3003, 5005, 6435, 6435, 5005, 3003, 1365, 455, 105;
...
-
a144394 n k = a144394_tabl !! (n-4) !! k
a144394_row n = a144394_tabl !! (n-4)
a144394_tabl = map (drop 2 . reverse . drop 2) $ drop 4 a007318_tabl
-- Reinhard Zumkeller, Dec 24 2012
-
p[x_, n_] = ((x + 1)^n - (x^n + n*x^(n - 1) + n*x + 1))/x^2
Table[CoefficientList[p[x, n], x], {n, 4, 15}] // Flatten
-
create_list(binomial(n, k + 2), n, 4, 20, k, 0, n - 4); /* Franck Maminirina Ramaharo, Jan 25 2019 */
A224541
Number of doubly-surjective functions f:[n]->[3].
Original entry on oeis.org
90, 630, 2940, 11508, 40950, 137610, 445896, 1410552, 4390386, 13514046, 41278068, 125405532, 379557198, 1145747538, 3452182656, 10388002848, 31230066186, 93828607686, 281775226860, 845929656900, 2539047258150, 7619759016090, 22864712861880, 68605412870088
Offset: 6
For n=6 we have a(6)=90 since there are 90 six-digit positive integers using only digits 1, 2, and 3 with each of those digits appearing at least twice. The first 30 of the ninety, namely those with initial digit 1, are given below:
112233, 112323, 112332, 113223, 113232, 113322,
121233, 121323, 121332, 122133, 122313, 122331,
123123, 123132, 123213, 123231, 123312, 123321,
131223, 131232, 131322, 132123, 132132, 132213,
132231, 132312, 132321, 133122, 133212, 133221.
Cf.
A052515, the number of doubly-surjective functions f:[n]->[2].
-
seq(3^n-3*2^n-3*n*2^(n-1)+3+3*n+3*n^2, n=6..40);
-
With[{nn=40},Drop[CoefficientList[Series[(Exp[x]-x-1)^3,{x,0,nn}],x] Range[0,nn]!,6]] (* Harvey P. Dale, Oct 01 2015 *)
-
x='x+O('x^66); Vec(serlaplace((exp(x)-x-1)^3)) \\ Joerg Arndt, Apr 10 2013
A322291
Triangle T read by rows: T(n, k) = Sum_{i=1..k} binomial(n, floor((n-k)/2)+i).
Original entry on oeis.org
1, 2, 3, 3, 6, 7, 6, 10, 14, 15, 10, 20, 25, 30, 31, 20, 35, 50, 56, 62, 63, 35, 70, 91, 112, 119, 126, 127, 70, 126, 182, 210, 238, 246, 254, 255, 126, 252, 336, 420, 456, 492, 501, 510, 511, 252, 462, 672, 792, 912, 957, 1002, 1012, 1022, 1023, 462, 924, 1254, 1584, 1749, 1914, 1969, 2024, 2035, 2046, 2047
Offset: 1
n\k| 1 2 3 4 5 6
---+-----------------------------
1 | 1
2 | 2 3
3 | 3 6 7
4 | 6 10 14 15
5 | 10 20 25 30 31
6 | 20 35 50 56 62 63
...
-
Flat(List([1..11], n->List([1..n], k->Sum([1..k], i->Binomial(n, Int((n-k)/2)+i)))));
-
a:=(n, k)->sum(binomial(n, floor((1/2)*n-(1/2)*k)+i), i = 1..k): seq(seq(a(n, k), k = 1..n), n = 1..11);
-
T[n_,k_]:=Sum[Binomial[n,Floor[(n-k)/2]+i],{i,1,k}]; Table[T[n,k],{n,1,11},{k,1,n}]
-
T(n, k) = sum(i=1, k, binomial(n, floor((n-k)/2)+i));
A352607
Triangle read by rows. T(n, k) = Bell(k)*Sum_{j=0..k}(-1)^(k+j)*binomial(n, n-k+j)*Stirling2(n-k+j, j) for n >= 0 and 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 0, 1, 6, 0, 1, 20, 0, 1, 50, 75, 0, 1, 112, 525, 0, 1, 238, 2450, 1575, 0, 1, 492, 9590, 18900, 0, 1, 1002, 34125, 141750, 49140, 0, 1, 2024, 114675, 854700, 900900, 0, 1, 4070, 371580, 4544925, 9909900, 2110185
Offset: 0
Triangle starts:
[0] 1;
[1] 0;
[2] 0, 1;
[3] 0, 1;
[4] 0, 1, 6;
[5] 0, 1, 20;
[6] 0, 1, 50, 75;
[7] 0, 1, 112, 525;
[8] 0, 1, 238, 2450, 1575;
[9] 0, 1, 492, 9590, 18900;
-
A352607 := (n, k) -> combinat:-bell(k)*add((-1)^(k+j)*binomial(n, n-k+j)* Stirling2(n-k+j, j), j = 0..k):
seq(seq(A352607(n, k), k = 0..n/2), n = 0..12);
# Second program:
egf := k -> combinat[bell](k)*(exp(x) - 1 - x)^k/k!:
A352607 := (n, k) -> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A352607(n, k), k = 0..n/2)), n=0..12);
# Recurrence:
A352607 := proc(n, k) option remember;
if k > n/2 then 0 elif k = 0 then k^n else k*A352607(n-1, k) +
combinat[bell](k)/combinat[bell](k-1)*(n-1)*A352607(n-2, k-1) fi end:
seq(print(seq(A352607(n, k), k=0..n/2)), n=0..12); # Mélika Tebni, Mar 24 2022
-
T[n_, k_] := BellB[k]*Sum[(-1)^(k+j)*Binomial[n, n-k+j]*StirlingS2[n-k+j, j], {j, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Oct 21 2023 *)
A224542
Number of doubly-surjective functions f:[n]->[4].
Original entry on oeis.org
2520, 30240, 226800, 1367520, 7271880, 35692800, 165957792, 742822080, 3234711480, 13803744864, 58021888080, 241116750624, 993313349544, 4064913201216, 16549636147968, 67112688842496, 271323921459096, 1094303232174240, 4405390451382960, 17709538489849440
Offset: 8
a(9) = 30240 since there are 30240 ways to distribute 9 different toys to 4 children so that each child gets at least 2 toys. One child must get 3 toys and the other children get 2 toys each. There are 4 ways to pick the lucky kid. There are C(9,3) ways to choose the 3 toys for the lucky kid. There are 6!/(2!)^3 ways to distribute the remaining 6 toys among the 3 kids. We obtain 4*C(9,3)*6!/8=30240.
-
seq(eval(diff((exp(x)-x-1)^4,x$n),x=0),n=8..40);
-
nn=27; Drop[Range[0,nn]! CoefficientList[Series[(Exp[x]-x-1)^4, {x,0,nn}], x], 8] (* Geoffrey Critzer, Sep 28 2013 *)
-
my(x='x+O('x^66)); Vec(serlaplace((exp(x)-x-1)^4)) /* Joerg Arndt, Apr 10 2013 */
A375659
For 0<=k<=n, T(n,k) = the number of Dyck-type lattice paths of length n, starting at the point (0,k), triangle T read by rows.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 3, 6, 7, 8, 6, 10, 14, 15, 16, 10, 20, 25, 30, 31, 32, 20, 35, 50, 56, 62, 63, 64, 35, 70, 91, 112, 119, 126, 127, 128, 70, 126, 182, 210, 238, 246, 254, 255, 256, 126, 252, 336, 420, 456, 492, 501, 510, 511, 512, 252, 462, 672, 792, 912, 957, 1002, 1012, 1022, 1023, 1024
Offset: 0
n | k=0 1 2 3 4 5 6 7
---+---------------------------------------
0 | 1
1 | 1 2
2 | 2 3 4
3 | 3 6 7 8
4 | 6 10 14 15 16
5 | 10 20 25 30 31 32
6 | 20 35 50 56 62 63 64
7 | 35 70 92 112 119 126 127 128
-
a:=(n,k)->sum(binomial(n, floor((1/2)*(n-k))+i), i = 0..k):
seq(seq(a(n, k), k = 0..n), n = 0..11);
-
from math import comb
def A375659(n,k):
return sum(comb(n,i+(n-k)//2) for i in range(k+1)) # John Tyler Rascoe, Sep 04 2024
A308804
Triangular table of coefficients of p in p^(k+2)/(1-p) LerchPhi(1-p,-1-k,(p-1)/p) as function of k=1..n.
Original entry on oeis.org
1, 2, -1, 9, -9, 1, 44, -66, 24, -1, 265, -530, 320, -55, 1, 1854, -4635, 3940, -1275, 118, -1, 14833, -44499, 48825, -23485, 4571, -245, 1, 133496, -467236, 628544, -403270, 123368, -15400, 500, -1, 1334961, -5339844, 8510376, -6841674, 2885694, -598416, 49914, -1011, 1, 14684570, -66080565, 121759560, -117782490, 63630588, -18808230, 2752320, -157785, 2034, -1
Offset: 1
- Wolfram Language & System Documentation Center, LerchPhi (then click in Applications).
-
Table[CoefficientList[ p^(k + 2)/(1 - p) LerchPhi[1 - p, -k - 1, (-1 + p)/p], p], {k, 1, 12}]
Showing 1-10 of 10 results.
Comments