cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A157207 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 33, 94, 33, 1, 1, 72, 442, 442, 72, 1, 1, 151, 1752, 3818, 1752, 151, 1, 1, 310, 6306, 25358, 25358, 6306, 310, 1, 1, 629, 21390, 144524, 268852, 144524, 21390, 629, 1, 1, 1268, 69822, 746744, 2312836, 2312836, 746744, 69822, 1268, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 25 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    5,     1;
  1,   14,    14,      1;
  1,   33,    94,     33,       1;
  1,   72,   442,    442,      72,       1;
  1,  151,  1752,   3818,    1752,     151,      1;
  1,  310,  6306,  25358,   25358,    6306,    310,     1;
  1,  629, 21390, 144524,  268852,  144524,  21390,   629,    1;
  1, 1268, 69822, 746744, 2312836, 2312836, 746744, 69822, 1268, 1;
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:= If[k<=Floor[n/2], k, n-k];
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
    Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
  • Sage
    def f(n,k): return k if (k <= n//2) else n-k
    @CachedFunction
    def T(n,k,m):  # A157207
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 1.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 1) = A094002(n-1). - G. C. Greubel, Jan 10 2022

Extensions

Edited by G. C. Greubel, Jan 10 2022

A274835 Number A(n,k) of set partitions of [n] such that the difference between each element and its block index is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 15, 1, 1, 1, 1, 1, 3, 52, 1, 1, 1, 1, 1, 2, 7, 203, 1, 1, 1, 1, 1, 1, 3, 14, 877, 1, 1, 1, 1, 1, 1, 2, 4, 39, 4140, 1, 1, 1, 1, 1, 1, 1, 3, 9, 95, 21147, 1, 1, 1, 1, 1, 1, 1, 2, 4, 18, 304, 115975, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 08 2016

Keywords

Examples

			A(3,0) = 1: 1|2|3.
A(3,1) = 5: 123, 12|3, 13|2, 1|23, 1|2|3.
A(5,2) = 7: 135|24, 13|24|5, 15|24|3, 1|24|35, 15|2|3|4, 1|2|35|4, 1|2|3|4|5.
A(7,3) = 9: 147|25|36, 14|25|36|7, 17|25|36|4, 1|25|36|47, 17|2|36|4|5, 1|2|36|47|5, 17|2|3|4|5|6, 1|2|3|47|5|6, 1|2|3|4|5|6|7.
Square array A(n,k) begins:
  1,      1,   1,  1,  1, 1, 1, 1, 1, 1, 1, ...
  1,      1,   1,  1,  1, 1, 1, 1, 1, 1, 1, ...
  1,      2,   1,  1,  1, 1, 1, 1, 1, 1, 1, ...
  1,      5,   2,  1,  1, 1, 1, 1, 1, 1, 1, ...
  1,     15,   3,  2,  1, 1, 1, 1, 1, 1, 1, ...
  1,     52,   7,  3,  2, 1, 1, 1, 1, 1, 1, ...
  1,    203,  14,  4,  3, 2, 1, 1, 1, 1, 1, ...
  1,    877,  39,  9,  4, 3, 2, 1, 1, 1, 1, ...
  1,   4140,  95, 18,  5, 4, 3, 2, 1, 1, 1, ...
  1,  21147, 304, 33, 11, 5, 4, 3, 2, 1, 1, ...
  1, 115975, 865, 89, 22, 6, 5, 4, 3, 2, 1, ...
		

Crossrefs

Main diagonal gives A000012.
A(n,ceiling(n/2)) gives A008619.
A(3n,n) gives A094002.

Programs

  • Maple
    b:= proc(n, k, m, t) option remember; `if`(n=0, 1,
         add(`if`(irem(j-t, k)=0, b(n-1, k, max(m, j),
                  irem(t+1, k)), 0), j=1..m+1))
        end:
    A:= (n, k)-> `if`(k=0, 1, b(n, k, 0, 1)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, k_, m_, t_] := b[n, k, m, t] = If[n==0, 1, Sum[If[Mod[j-t, k]==0, b[n-1, k, Max[m, j], Mod[t+1, k]], 0], {j, 1, m+1}]]; A[n_, k_]:= If[k==0, 1, b[n, k, 0, 1]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)

A144438 Triangle T(n,k) by rows: T(n, k) = (n-k+1)*T(n-1, k-1) + k*T(n-1, k) + T(n-2, k-1) with T(n, 1) = T(n, n) = 1.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 33, 89, 33, 1, 1, 72, 413, 413, 72, 1, 1, 151, 1632, 3393, 1632, 151, 1, 1, 310, 5874, 22145, 22145, 5874, 310, 1, 1, 629, 19943, 125456, 224843, 125456, 19943, 629, 1, 1, 1268, 65171, 647299, 1899096, 1899096, 647299, 65171, 1268, 1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 05 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    5,     1;
  1,   14,    14,      1;
  1,   33,    89,     33,       1;
  1,   72,   413,    413,      72,       1;
  1,  151,  1632,   3393,    1632,     151,      1;
  1,  310,  5874,  22145,   22145,    5874,    310,     1;
  1,  629, 19943, 125456,  224843,  125456,  19943,   629,    1;
  1, 1268, 65171, 647299, 1899096, 1899096, 647299, 65171, 1268, 1;
		

Crossrefs

Cf. A001053 (row sums), A094002 (column k=2).

Programs

  • Mathematica
    T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]];
    Table[T[n,k,1,1], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2022 *)
  • Sage
    def T(n,k,m,j):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
    def A144438(n,k): return T(n,k,1,1)
    flatten([[A144438(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 03 2022

Formula

T(n,k) = (n-k+1)*T(n-1, k-1) + k*T(n-1, k) + T(n-2, k-1), T(n, 1) = T(n, n) = 1.
Sum_{k=1..n} T(n, k) = A001053(n+1).
From G. C. Greubel, Mar 03 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 3) = (1/2)*(n^2 +3*n +1 + 73*3^(n-3) - 5*2^(n-2)*(2*n+3)). (End)

A188589 Expansion of (1-3*x+6*x^2-3*x^3)/((1-x)^2*(1-2*x)).

Original entry on oeis.org

1, 1, 5, 14, 33, 72, 151, 310, 629, 1268, 2547, 5106, 10225, 20464, 40943, 81902, 163821, 327660, 655339, 1310698, 2621417, 5242856, 10485735, 20971494, 41943013, 83886052, 167772131, 335544290, 671088609, 1342177248, 2684354527
Offset: 0

Views

Author

Paul Barry, Apr 04 2011

Keywords

Comments

Second column of the 1-Euler triangle A188587. In general, the second column of the r-Euler triangle has g.f. (1-(4-r)*x+2*(4-r)*x^2-(4-r)*x^3)/((1-x)^2*(1-2*x)).

Programs

  • Mathematica
    CoefficientList[Series[(1-3x+6x^2-3x^3)/((1-x)^2(1-2x)),{x,0,30}],x] (* or *) LinearRecurrence[{4,-5,2},{1,1,5,14},40] (* Harvey P. Dale, Nov 26 2017 *)
  • PARI
    a(n) = if (n==0, 1, 5*2^(n-1) - n - 3) \\ Michel Marcus, Jul 24 2013

Formula

a(n+1)=A094002(n).
a(n) = 5*2^(n-1)-n-3, n>0.

A336014 Irregular triangle read by rows: T(n,1) = T(n,2) = T(n,3*n-2) = T(n,3*n-1) = n for n >= 1 and T(n,k) = T(n-1,k-2) + T(n-1,k-1) for n > 1, 3 <= k <= 3*(n-1).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 6, 7, 8, 8, 8, 7, 6, 4, 4, 5, 5, 8, 10, 13, 15, 16, 16, 15, 13, 10, 8, 5, 5, 6, 6, 10, 13, 18, 23, 28, 31, 32, 31, 28, 23, 18, 13, 10, 6, 6, 7, 7, 12, 16, 23, 31, 41, 51, 59, 63, 63, 59, 51, 41, 31, 23, 16, 12, 7, 7
Offset: 1

Views

Author

Lechoslaw Ratajczak, Jul 04 2020

Keywords

Comments

The number of terms in row n is 3*n-1 = A016789(n-1).
The sum of row n is equal to 2*A094002(n-1) = 2*A188589(n).
Fibonacci(n) = T(n+k,n) - T(n+k-1,n) for n >= 1, k = 1,2,3,...
The elements b(k) of the main diagonal, superdiagonal 1 and all subdiagonals have the recursive formula: b(k) = 2*b(k-1) + b(k-2) - 2*b(k-3) - b(k-4) for k > 4.

Examples

			Triangle begins:
n\k 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20...
1   1  1
2   2  2  2  2  2
3   3  3  4  4  4  4  3  3
4   4  4  6  7  8  8  8  7  6  4  4
5   5  5  8 10 13 15 16 16 15 13 10  8  5  5
6   6  6 10 13 18 23 28 31 32 31 28 23 18 13 10  6  6
7   7  7 12 16 23 31 41 51 59 63 63 59 51 41 31 23 16 12  7  7
...
		

Crossrefs

Superdiagonal 1 is A029907 for n >= 1.
The main diagonal is A208354 for n >= 1.
Subdiagonal 1 is A102702(n-1) for n >= 1.
Subdiagonal 2 is A206268(n+2) for n >= 1 (conjectured).
Subdiagonal 3 is A191830(n+3) for n >= 1.

Formula

T(n,k) = T(n,3*k-n) for 1 <= k <= 3*n-1.
T(n,k) = Sum_{u=2*(n-k)+3..2*n-k+1} ceiling(u/2)*A065941(k-2,u-2*(n-k)-3) for n >= 3, 3 <= k <= n.
T(n,k) = Sum_{m1=1..k-n} A208354(m1)*binomial(n-m1-1, k-n-m1) + Sum_{m2=1..2*n-k} A208354(m2)*binomial(n-m2-1, 2*n-k-m2) for n >= 2, n+1 <= k <= 2*n-1.
T(n,k) = Sum_{u=2*(k-2*n)+3..k-n+1} ceiling(u/2)*A065941(3*n-k-2,u-2*(k-2*n)-3) for n>= 3, 2*n <= k <= 3*(n-1).
T(n,k) = A208354(k) + (n-k)*Fibonacci(k) for n >= 3, 3 <= k <= n.
T(n,k) = A029907(k-1) + (n-k+1)*Fibonacci(k) for n >= 2, 3 <= k <= n+1.
Showing 1-5 of 5 results.