A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A232603
a(n) = 2^n * Sum_{k=0..n} k^p*q^k, where p=2, q=-1/2.
Original entry on oeis.org
0, -1, 2, -5, 6, -13, 10, -29, 6, -69, -38, -197, -250, -669, -1142, -2509, -4762, -9813, -19302, -38965, -77530, -155501, -310518, -621565, -1242554, -2485733, -4970790, -9942309, -19883834, -39768509, -79536118
Offset: 0
a(3) = 2^3 * [0^2/2^0 - 1^2/2^1 + 2^2/2^2 - 3^2/2^3] = -5.
Cf.
A001045 (p=0,q=-1/2),
A053088 (p=1,q=-1/2),
A232604 (p=3,q=-1/2),
A000225 (p=0,q=1/2),
A000295 and
A125128 (p=1,q=1/2),
A047520 (p=2,q=1/2),
A213575 (p=3,q=1/2),
A232599 (p=3,q=-1),
A232600 (p=1,q=-2),
A232601 (p=2,q=-2),
A232602 (p=3,q=-2).
-
[((-1)^n*(2+12*n+9*n^2) -2^(n+1))/27: n in [0..30]]; // G. C. Greubel, Mar 31 2021
-
A232603:= n-> ((-1)^n*(2+12*n+9*n^2) -2^(n+1))/27; seq(A232603(n), n=0..35); # G. C. Greubel, Mar 31 2021
-
LinearRecurrence[{-1,3,5,2}, {0,-1,2,-5}, 35] (* G. C. Greubel, Mar 31 2021 *)
-
a(n)=((-1)^n*(9*n^2+12*n+2)-2^(n+1))/27;
-
[((-1)^n*(2+12*n+9*n^2) -2^(n+1))/27 for n in (0..30)] # G. C. Greubel, Mar 31 2021
A232604
a(n) = 2^n * Sum_{k=0..n} k^p*q^k, where p=3, q=-1/2.
Original entry on oeis.org
0, -1, 6, -15, 34, -57, 102, -139, 234, -261, 478, -375, 978, -241, 2262, 1149, 6394, 7875, 21582, 36305, 80610, 151959, 314566, 616965, 1247754, 2479883, 4977342, 9935001, 19891954, 39759519, 79546038, 159062285
Offset: 0
a(3) = 2^3 * (0^3/2^0 - 1^3/2^1 + 2^3/2^2 - 3^3/2^3) = 0-4+16-27 = -15.
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), DOI 10.3247/SL1Math06.002, Section V.
- Index entries for linear recurrences with constant coefficients, signature (-2,2,8,7,2).
Cf.
A001045 (p=0,q=-1/2),
A053088 (p=1,q=-1/2),
A232603 (p=2,q=-1/2),
A000225 (p=0,q=1/2),
A000295 and
A125128 (p=1,q=1/2),
A047520 (p=2,q=1/2),
A213575 (p=3,q=1/2),
A232599 (p=3,q=-1),
A232600 (p=1,q=-2),
A232601 (p=2,q=-2),
A232602 (p=3,q=-2).
-
[(2^(n+1) + (-1)^n*(9*n^3 +18*n^2 +6*n -2))/27: n in [0..35]]; // G. C. Greubel, Mar 31 2021
-
A232604:= n-> (2^(n+1) +(-1)^n*(9*n^3 +18*n^2 +6*n -2))/27; seq(A232604(n), n=0..30); # G. C. Greubel, Mar 31 2021
-
LinearRecurrence[{-2,2,8,7,2}, {0,-1,6,-15,34}, 35] (* G. C. Greubel, Mar 31 2021 *)
-
a(n)=(2^(n+1)+(-1)^n*(9*n^3+18*n^2+6*n-2))/27;
-
[(2^(n+1) + (-1)^n*(9*n^3 +18*n^2 +6*n -2))/27 for n in (0..35)] # G. C. Greubel, Mar 31 2021
A213568
Rectangular array: (row n) = b**c, where b(h) = 2^(h-1), c(h) = n-1+h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 11, 7, 3, 26, 18, 10, 4, 57, 41, 25, 13, 5, 120, 88, 56, 32, 16, 6, 247, 183, 119, 71, 39, 19, 7, 502, 374, 246, 150, 86, 46, 22, 8, 1013, 757, 501, 309, 181, 101, 53, 25, 9, 2036, 1524, 1012, 628, 372, 212, 116, 60, 28, 10, 4083, 3059, 2035, 1267
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1...4....11...26....57....120
2...7....18...41....88....183
3...10...25...56....119...246
4...13...32...71....150...309
5...16...39...86....181...372
6...19...46...101...212...435
-
Flat(List([1..12], n-> List([1..n], k-> 2^(n-k+1)*(k+1) -(n+2) ))); # G. C. Greubel, Jul 26 2019
-
[2^(n-k+1)*(k+1) -(n+2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 26 2019
-
(* First program *)
b[n_]:= 2^(n-1); c[n_]:= n;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213568 *)
d = Table[t[n, n], {n, 1, 40}] (* A213569 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A047520 *)
(* Second program *)
Table[2^(n-k+1)*(k+1) -(n+2), {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 26 2019 *)
-
for(n=1,12, for(k=1,n, print1(2^(n-k+1)*(k+1) -(n+2), ", "))) \\ G. C. Greubel, Jul 26 2019
-
[[2^(n-k+1)*(k+1) -(n+2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 26 2019
A066999
a(n) = 3^n * Sum_{i=1..n} i^3/3^i.
Original entry on oeis.org
1, 11, 60, 244, 857, 2787, 8704, 26624, 80601, 242803, 729740, 2190948, 6575041, 19727867, 59186976, 177565024, 532699985, 1598105787, 4794324220, 14382980660, 43148951241, 129446864371, 388340605280, 1165021829664
Offset: 1
-
f[n_] := 3^n*Sum[i^3/3^i, {i, n}]; Array[f, 24] (* Robert G. Wilson v, Nov 28 2012 *)
-
{ s=0; for (n=1, 200, s+=n^3/3^n; write("b066999.txt", n, " ", 3^n*s) ) } \\ Harry J. Smith, Apr 25 2010
A213569
Principal diagonal of the convolution array A213568.
Original entry on oeis.org
1, 7, 25, 71, 181, 435, 1009, 2287, 5101, 11243, 24553, 53223, 114661, 245731, 524257, 1114079, 2359261, 4980699, 10485721, 22020055, 46137301, 96468947, 201326545, 419430351, 872415181, 1811939275, 3758096329, 7784628167
Offset: 1
-
List([1..30], n-> 2^n*(n+1) -(2*n+1)); # G. C. Greubel, Jul 25 2019
-
[2^n*(n+1) -(2*n+1): n in [1..30]]; // G. C. Greubel, Jul 25 2019
-
f:= gfun:-rectoproc({a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4),
a(1)=1,a(2)=7,a(3)=25,a(4)=71},a(n),remember):
map(f, [$1..30]); # Robert Israel, Sep 19 2017
-
(* First program *)
b[n_]:= 2^(n-1); c[n_]:= n;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213568 *)
d = Table[t[n, n], {n, 1, 40}] (* A213569 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A047520 *)
(* Additional programs *)
LinearRecurrence[{6,-13,12,-4},{1,7,25,71},30] (* Harvey P. Dale, Jan 06 2015 *)
Table[2^n*(n+1) -(2*n+1), {n,30}] (* G. C. Greubel, Jul 25 2019 *)
-
my(x='x+O('x^30)); Vec(x*(1+x-4*x^2)/((1-2*x)^2*(1-x)^2)) \\ Altug Alkan, Sep 19 2017
-
vector(30, n, 2^n*(n+1) -(2*n+1)) \\ G. C. Greubel, Jul 25 2019
-
[2^n*(n+1) -(2*n+1) for n in (1..30)] # G. C. Greubel, Jul 25 2019
A213756
Rectangular array: (row n) = b**c, where b(h) = -1 + 2^h, c(h) = 2*n - 3 + 2*h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 6, 3, 21, 14, 5, 58, 43, 22, 7, 141, 110, 65, 30, 9, 318, 255, 162, 87, 38, 11, 685, 558, 369, 214, 109, 46, 13, 1434, 1179, 798, 483, 266, 131, 54, 15, 2949, 2438, 1673, 1038, 597, 318, 153, 62, 17, 5998, 4975, 3442, 2167, 1278, 711, 370, 175, 70
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....6....21....58....141...318
3....14...43....110...255...558
5....22...65....162...369...798
7....30...87....214...483...1038
9....38...109...266...597...1278
11...46...131...318...711...1518
-
b[n_] := -1 + 2^n; c[n_] := 2 n - 1;
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213756 *)
Table[t[n, n], {n, 1, 40}] (* A213757 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213758 *)
A067534
a(n) = 4^n * Sum_{i=1..n} i^4/4^i.
Original entry on oeis.org
1, 20, 161, 900, 4225, 18196, 75185, 304836, 1225905, 4913620, 19669121, 78697220, 314817441, 1259308180, 5037283345, 20149198916, 80596879185, 322387621716, 1289550617185, 5158202628740, 20632810709441
Offset: 1
-
Table[4^n*Sum[i^4/4^i,{i,n}], {n,30}] (* or *) LinearRecurrence[ {9,-30,50,-45,21,-4}, {1,20,161,900,4225,18196}, 30] (* Harvey P. Dale, Jul 15 2012 *)
A213573
Rectangular array: (row n) = b**c, where b(h) = 2^(h-1), c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 6, 4, 21, 17, 9, 58, 50, 34, 16, 141, 125, 93, 57, 25, 318, 286, 222, 150, 86, 36, 685, 621, 493, 349, 221, 121, 49, 1434, 1306, 1050, 762, 506, 306, 162, 64, 2949, 2693, 2181, 1605, 1093, 693, 405, 209, 81, 5998, 5486, 4462, 3310, 2286, 1486
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1, 6, 21, 58, 141, 318, ...
4, 17, 50, 125, 286, 621, ...
9, 34, 93, 222, 493, 1050, ...
16, 57, 150, 349, 762, 1605, ...
25, 86, 221, 506, 1093, 2286, ...
36, 121, 306, 693, 1486, 3093, ...
...
-
Flat(List([1..12], n-> List([1..n], k-> 2^(n-k+1)*((k+1)^2 +2)- ((n+2)^2 +2) ))); # G. C. Greubel, Jul 25 2019
-
[2^(n-k+1)*((k+1)^2 +2)-((n+2)^2 +2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 25 2019
-
(* First program *)
b[n_]:= 2^(n-1); c[n_]:= n^2;
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[T[n, k], {k, 60}] (* A213573 *)
d = Table[T[n, n], {n, 40}] (* A213574 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213575 *)
(* Additional programs *)
Table[2^(n-k+1)*((k+1)^2 +2)-((n+2)^2 +2), {n,12}, {k, n}]//Flatten (* G. C. Greubel, Jul 25 2019 *)
-
for(n=1,12, for(k=1,n, print1(2^(n-k+1)*((k+1)^2 +2)-((n+2)^2 +2), ", "))) \\ G. C. Greubel, Jul 25 2019
-
[[2^(n-k+1)*((k+1)^2 +2)-((n+2)^2 +2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 25 2019
A213574
Principal diagonal of the convolution array A213573.
Original entry on oeis.org
1, 17, 93, 349, 1093, 3093, 8221, 20957, 51861, 125509, 298477, 699789, 1621285, 3718325, 8453181, 19069885, 42728245, 95156901, 210762253, 464517485, 1019214021, 2227173397, 4848613213, 10519312029, 22749902293, 49056576773, 105495131181, 226291086157
Offset: 1
-
List([1..30], n-> 2^n*(3+2*n+n^2) - (3+4*n+4*n^2)); # G. C. Greubel, Jul 25 2019
-
[2^n*(3+2*n+n^2) - (3+4*n+4*n^2): n in [1..30]]; // G. C. Greubel, Jul 25 2019
-
(* First program *)
b[n_]:= 2^(n-1); c[n_]:= n;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213568 *)
d = Table[t[n, n], {n, 1, 40}] (* A213569 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A047520 *)
(* Additional programs *)
LinearRecurrence[{9,-33,63,-66,36,-8},{1,17,93,349,1093,3093},30] (* Harvey P. Dale, Jun 25 2014 *)
Rest[CoefficientList[Series[x(1+8x-27x^2+10x^3+16x^4)/(1-3x+2x^2)^3, {x, 0, 30}], x]] (* Vincenzo Librandi, Jun 26 2014 *)
-
Vec(x*(1+8*x-27*x^2+10*x^3+16*x^4)/((1-x)^3*(1-2*x)^3) + O(x^30)) \\ Colin Barker, Oct 30 2017
-
vector(30, n, 2^n*(3+2*n+n^2) - (3+4*n+4*n^2)) \\ G. C. Greubel, Jul 25 2019
-
[2^n*(3+2*n+n^2) - (3+4*n+4*n^2) for n in (1..30)] # G. C. Greubel, Jul 25 2019
Showing 1-10 of 15 results.
Comments