cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213581 Antidiagonal sums of the convolution array A213571.

Original entry on oeis.org

1, 8, 36, 124, 367, 988, 2498, 6048, 14197, 32576, 73472, 163508, 360027, 785908, 1703294, 3669240, 7863393, 16776120, 35650300, 75495980, 159381831, 335542348, 704640826, 1476392464, 3087004877, 6442447728, 13421769208
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Crossrefs

Programs

  • GAP
    List([1..35], n-> 2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6); # G. C. Greubel, Jul 26 2019
  • Magma
    [2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6: n in [1..35]]; // G. C. Greubel, Jul 26 2019
    
  • Mathematica
    (* First Program *)
    b[n_]:= n; c[n_]:= -1 + 2^n;
    t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_]:= Table[t[n, k], {k, 1, 60}]  (* A213571 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213572 *)
    s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213581 *)
    (* Second program *)
    Table[2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6, {n,35}] (* G. C. Greubel, Jul 26 2019 *)
  • PARI
    vector(35, n, 2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6) \\ G. C. Greubel, Jul 26 2019
    
  • Sage
    [2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6 for n in (1..35)] # G. C. Greubel, Jul 26 2019
    

Formula

a(n) = 8*a(n-1) - 26*a(n-2) + 44*a(n-3) - 41*a(n-4) + 20*a(n-5) - 4*a(n-6).
G.f.: f(x)/g(x), where f(x) = x*(1 - 2*x^2) and g(x) = (1 - x)^4*(1 - 2*x)^2.
a(n) = 8 +(n-2)*2^(n+2) -(n-2)*n*(n+5)/6. - Bruno Berselli, Jul 09 2012