A213581 Antidiagonal sums of the convolution array A213571.
1, 8, 36, 124, 367, 988, 2498, 6048, 14197, 32576, 73472, 163508, 360027, 785908, 1703294, 3669240, 7863393, 16776120, 35650300, 75495980, 159381831, 335542348, 704640826, 1476392464, 3087004877, 6442447728, 13421769208
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (8,-26,44,-41,20,-4).
Programs
-
GAP
List([1..35], n-> 2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6); # G. C. Greubel, Jul 26 2019
-
Magma
[2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6: n in [1..35]]; // G. C. Greubel, Jul 26 2019
-
Mathematica
(* First Program *) b[n_]:= n; c[n_]:= -1 + 2^n; t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213571 *) d = Table[t[n, n], {n, 1, 40}] (* A213572 *) s[n_]:= Sum[t[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A213581 *) (* Second program *) Table[2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6, {n,35}] (* G. C. Greubel, Jul 26 2019 *)
-
PARI
vector(35, n, 2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6) \\ G. C. Greubel, Jul 26 2019
-
Sage
[2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6 for n in (1..35)] # G. C. Greubel, Jul 26 2019
Formula
a(n) = 8*a(n-1) - 26*a(n-2) + 44*a(n-3) - 41*a(n-4) + 20*a(n-5) - 4*a(n-6).
G.f.: f(x)/g(x), where f(x) = x*(1 - 2*x^2) and g(x) = (1 - x)^4*(1 - 2*x)^2.
a(n) = 8 +(n-2)*2^(n+2) -(n-2)*n*(n+5)/6. - Bruno Berselli, Jul 09 2012