A213636 Remainder when n is divided by its least nondivisor.
1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1
Offset: 1
Keywords
Examples
a(10) = 10-3*[10/3] = 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local k; for k from 2 do if n mod k <> 0 then return n mod k fi od end proc: map(f, [$1..100]); # Robert Israel, Jul 27 2017
-
Mathematica
y=120; z=2000; t = Table[k := 1; While[Mod[n, k] == 0, k++]; k, {n, 1, z}] (*A007978*) Table[Floor[n/t[[n]]], {n, 1, y}] (*A213633*) Table[n - Floor[n/t[[n]]], {n, 1, y}] (*A213634*) Table[t[[n]]*Floor[n/t[[n]]], {n, 1, y}] (*A213635*) t1 = Table[n - t[[n]]*Floor[n/t[[n]]], {n, 1, z}] (* A213636 *) Flatten[Position[t1, 1]] (* A213637 *) Flatten[Position[t1, 2]] (* A213638 *) rem[n_]:=Module[{lnd=First[Complement[Range[n],Divisors[n]]]},Mod[n,lnd]]; Join[{1,2},Array[rem,100,3]] (* Harvey P. Dale, Mar 26 2013 *) Table[Mod[n, SelectFirst[Range[n + 1], ! Divisible[n, #] &]], {n, 105}] (* Michael De Vlieger, Jul 29 2017 *)
-
Python
def a(n): k=2 while n%k==0: k+=1 return n%k print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 28 2017
-
Python
def A213636(n): return next(filter(None, (n%d for d in range(2,n)))) if n>2 else n # Chai Wah Wu, Feb 22 2023
-
Scheme
(define (A213636 n) (modulo n (A007978 n))) ;; Antti Karttunen, Jul 27 2017
Comments