A213808 Triangle of numbers C^(7)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 7 appearances allowed.
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1716, 1, 8, 36, 120, 330, 792, 1716, 3432, 6427, 1, 9, 45, 165, 495, 1287, 3003, 6435, 12861, 24229, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24300, 48520, 91828
Offset: 0
Examples
Triangle begins n/k | 0 1 2 3 4 5 6 7 8 ----+--------------------------------------------------- 0 | 1 1 | 1 1 2 | 1 2 3 3 | 1 3 6 10 4 | 1 4 10 20 35 5 | 1 5 15 35 70 126 6 | 1 6 21 56 126 252 462 7 | 1 7 28 84 210 462 924 1716 8 | 1 8 36 120 330 792 1716 3432 6427
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
Table[Sum[(-1)^r*Binomial[n, r]*Binomial[n - 8*r + k - 1, n - 1], {r, 0, Floor[k/8]}], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 25 2017 *)
-
PARI
for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, sum(r=0, floor(k/8), (-1)^r*binomial(n,r)*binomial(n-8*r + k-1,n-1))), ", "))) \\ G. C. Greubel, Nov 25 2017
Comments