cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A261619 a(n) = floor(prime(n^2) / prime(n)).

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 16, 18, 18, 21, 22, 24, 27, 30, 30, 31, 35, 36, 38, 42, 43, 45, 47, 47, 50, 53, 56, 59, 61, 59, 62, 63, 67, 66, 70, 72, 73, 76, 78, 80, 83, 83, 86, 89, 92, 92, 91, 94, 97, 100, 101, 105, 105, 107, 109, 111, 115, 117, 119
Offset: 1

Views

Author

Altug Alkan, Sep 09 2015

Keywords

Comments

Inspired by A213926.
The reason of "/" operation between prime(n^2) and prime(n) is n^2 / n = n.
Sequence is not monotone: 61 = a(30) > a(31) = 59. In the first thousand terms there are 83 less than the preceding term; in the first ten thousand, 865. - Charles R Greathouse IV, Sep 12 2015

Examples

			For n=2, a(n) = floor(prime(n^2) / prime(n)) =  floor(7/3) = 2.
		

Crossrefs

Programs

  • Magma
    [NthPrime(n^2) div NthPrime(n): n in [1..70]]; // Vincenzo Librandi, May 24 2019
    
  • Mathematica
    Table[Floor[Prime[n^2] / Prime[n]], {n, 1, 100}] (* Vincenzo Librandi, May 24 2019 *)
  • PARI
    a(n) = floor(prime(n^2) / prime(n));
    vector(70, n, a(n))
    
  • PARI
    first(n)=my(v=List(),p,k); forprime(q=2,, if(issquare(k++), p=nextprime(p+1); listput(v, q\p); if(#v==n, return(Vec(v))))) \\ Charles R Greathouse IV, Sep 12 2015
    
  • Sage
    [floor(nth_prime(n^2)/nth_prime(n)) for n in (1..70)] # G. C. Greubel, May 24 2019

Formula

a(n) = floor(A011757(n) / A000040(n)).
a(n) ~ n/(2 log^2 n). - Charles R Greathouse IV, Sep 12 2015

A214612 prime(n^3) - prime(n).

Original entry on oeis.org

0, 16, 98, 304, 680, 1308, 2292, 3652, 5496, 7890, 10926, 14716, 19362, 24766, 31272, 38820, 47598, 57498, 68964, 81728, 96064, 112212, 129990, 149628, 171432, 194942, 220758, 248744, 279322, 312470, 347580, 385962, 427032, 470794, 517404, 567720, 620374
Offset: 1

Views

Author

Jonathan Vos Post, Mar 06 2013

Keywords

Comments

This is to exponent 3 as A213926 is to exponent 2.

Examples

			a(1) = prime(1^3) - prime(1) = 2-2 = 0.
a(2) = prime(2^3) - prime(2) = 19-3 = 16.
a(3) = prime(3^3) - prime(3) = 103-5 = 98.
		

Crossrefs

Programs

  • Mathematica
    Table[Prime[n^3] - Prime[n], {n, 50}] (* T. D. Noe, Mar 07 2013 *)
Showing 1-2 of 2 results.