A340810 Triangle T(n,k), n>=2, 2 <= k <= A214046(n), read by rows, where T(n,k) = n! mod k^n.
2, 6, 8, 24, 24, 120, 16, 720, 48, 666, 5040, 128, 954, 40320, 384, 8586, 100736, 362880, 768, 26811, 483072, 3628800, 1280, 58725, 2168064, 39916800, 3072, 173259, 9239552, 234860975, 479001600
Offset: 2
Examples
n\k | 2 3 4 5 6 -----+--------------------------------------------- 2 | 2; 3 | 6; 4 | 8, 24; 5 | 24, 120; 6 | 16, 720; 7 | 48, 666, 5040; 8 | 128, 954, 40320; 9 | 384, 8586, 100736, 362880; 10 | 768, 26811, 483072, 3628800; 11 | 1280, 58725, 2168064, 39916800; 12 | 3072, 173259, 9239552, 234860975, 479001600;
Links
- Seiichi Manyama, Rows n = 2..200, flattened
Programs
-
Mathematica
row[n_] := Module[{k = 1, s = {}}, While[k^n <= n!, k++; AppendTo[s, Mod[n!, k^n]]]; s]; Table[row[n], {n, 2, 12}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
-
Ruby
def f(n) return 1 if n < 2 (1..n).inject(:*) end def A(n) m = f(n) ary = [] (2..n).each{|i| j = i ** n ary << m % j break if m <= j } ary end def A340810(n) (2..n).map{|i| A(i)}.flatten end p A340810(12)
Comments