cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A221740 a(n) = -4*((n-1)*(n+1)^(n+1)+1)/(((-1)^n-3)*n^3).

Original entry on oeis.org

1, 7, 19, 293, 1493, 38127, 293479, 10593529, 109739369, 5135610071, 66987982331, 3856048810781, 60693710471869, 4149140360751583, 76519827268721103, 6058888636862818097, 128138108936443028945, 11533996620790579909159
Offset: 1

Views

Author

Keywords

Comments

Per exhaustive program, written for bases from 2 to 10, the number of permutations pairs, which have the same ratio, equal to A221740(n)/A221741(n) = (n^2*(n+1)^n - (n+1)^n + 1) / (-n^2 + n*(n+1)^n + (n+1)^n - n - 1), is: {2,2,3,3,5,3,7,5,7,...} for n >= 1 where n = r-1 and r is the base radix. Judging by above sequence it appears that the number of such permutations pairs is related to phi, which is the Euler totient function - according to A039649, A039650, A214288 (see bullet 1 of the analysis in the answer section of the Mathematics StackExchange link). - Alexander R. Povolotsky, Jan 26 2013

Crossrefs

Programs

  • Mathematica
    Table[-4*((n - 1)*(n + 1)^(n + 1) + 1)/(((-1)^n - 3)*n^3), {n,1,50}] (* G. C. Greubel, Feb 19 2017 *)
  • Maxima
    makelist(-4*((n-1)*(n+1)^(n+1)+1)/(((-1)^n-3)*n^3),n,1,20); /* Martin Ettl, Jan 25 2013 */
    
  • PARI
    for(n=1,25, print1(-4*((n - 1)*(n + 1)^(n + 1) + 1)/(((-1)^n - 3)*n^3), ", ")) \\ G. C. Greubel, Feb 19 2017

Formula

a(n) = -4*A051846(n)/((-3 + (-1)^n)*n).
From Alexander R. Povolotsky, Oct 12 2022: (Start)
floor(a(n+1)/A221741(n+1)) = n.
Limit_{n->oo} (a(n)/A221741(n) - floor(a(n)/A221741(n))) = 0. (End)

A221741 a(n) = -4*(((n+1)^(n+1)-(n+1))/((n+1)-1)^2-1)/((-3+(-1)^n)*n).

Original entry on oeis.org

1, 5, 9, 97, 373, 7625, 48913, 1513361, 13717421, 570623341, 6698798233, 350549891889, 5057809205989, 319164643134737, 5465701947765793, 403925909124187873, 8008631808527689309, 678470389458269406421, 15287592943577781017641
Offset: 1

Views

Author

Keywords

Comments

Per exhaustive program, written for bases from 2 to 10, the number of permutations pairs, which have the same ratio, equal to A221740(n)/a(n) = (n^2 (n+1)^n-(n+1)^n+1) / (-n^2+n (n+1)^n+(n+1)^n-n-1), is: {2,2,3,3,5,3,7,5,7,...} for n>=1 where n=r-1 and r is the base radix. Judging by above sequence it appears that the number of such permutations pairs is related to phi, which is the Euler totient function - according to A039649, A039650, A214288 (see bullet 1 of the analysis in the answer section of the StackExchange link). Alexander R. Povolotsky, Jan 26 2013

Crossrefs

Programs

  • Mathematica
    Table[-4*(((n + 1)^(n + 1) - (n + 1))/((n + 1) - 1)^2 - 1)/((-3 + (-1)^n)*n), {n,1,50}] (* G. C. Greubel, Feb 19 2017 *)
  • Maxima
    makelist(-4*(((n+1)^(n+1)-(n+1))/((n+1)-1)^2-1)/((-3+(-1)^n)*n), n, 1, 20); /* Martin Ettl, Jan 25 2013 */
    
  • PARI
    for(n=1,25, print1(-4*(((n + 1)^(n + 1) - (n + 1))/((n + 1) - 1)^2 - 1)/((-3 + (-1)^n)*n), ", ")) \\ G. C. Greubel, Feb 19 2017

Formula

a(n) = -4*A023811(n+1)/((-3 + (-1)^n)*n).

A214287 Primes of the form phi(n)-1 sorted by increasing n, where phi is the Euler totient function.

Original entry on oeis.org

3, 5, 3, 5, 3, 3, 11, 5, 7, 7, 5, 17, 7, 11, 7, 19, 11, 17, 11, 7, 29, 19, 23, 11, 17, 23, 11, 41, 19, 23, 41, 19, 31, 23, 17, 23, 59, 29, 31, 47, 19, 31, 43, 23, 23, 71, 59, 23, 31, 53, 23, 41, 23, 71, 43, 59, 71, 31, 41, 59, 31, 101, 47, 47, 107, 71, 47, 71, 31, 109, 59, 79, 59, 83
Offset: 1

Views

Author

Vincenzo Librandi, Jul 13 2012

Keywords

Comments

Primes in A109606.

Crossrefs

Cf. A000010, A078892 (associated n), A214288.

Programs

  • Mathematica
    Select[Table[EulerPhi[n]-1,{n,1,1000}],PrimeQ]
Showing 1-3 of 3 results.