A221741
a(n) = -4*(((n+1)^(n+1)-(n+1))/((n+1)-1)^2-1)/((-3+(-1)^n)*n).
Original entry on oeis.org
1, 5, 9, 97, 373, 7625, 48913, 1513361, 13717421, 570623341, 6698798233, 350549891889, 5057809205989, 319164643134737, 5465701947765793, 403925909124187873, 8008631808527689309, 678470389458269406421, 15287592943577781017641
Offset: 1
-
Table[-4*(((n + 1)^(n + 1) - (n + 1))/((n + 1) - 1)^2 - 1)/((-3 + (-1)^n)*n), {n,1,50}] (* G. C. Greubel, Feb 19 2017 *)
-
makelist(-4*(((n+1)^(n+1)-(n+1))/((n+1)-1)^2-1)/((-3+(-1)^n)*n), n, 1, 20); /* Martin Ettl, Jan 25 2013 */
-
for(n=1,25, print1(-4*(((n + 1)^(n + 1) - (n + 1))/((n + 1) - 1)^2 - 1)/((-3 + (-1)^n)*n), ", ")) \\ G. C. Greubel, Feb 19 2017
A051847
Bisection of A051846, divided by the term position.
Original entry on oeis.org
1, 19, 1493, 293479, 109739369, 66987982331, 60693710471869, 76519827268721103, 128138108936443028945, 275176672984400058317539, 737345594135016860806925221, 2411620538399461719230688945719
Offset: 1
A212958
Array with a variable number of columns, where terms in the n-th row are the differences (computed in decimal base and divided by 9) between equal ratio permutations, found in the base n>=2, and the first (in ascending order of digits) minimal value permutation of {0,1,...,n}.
Original entry on oeis.org
0, 0, 1, 1, 0, 1, 12, 22, 0, 21, 22, 123, 131, 343, 0, 342, 343, 1234, 2531, 4664, 0, 1421, 3242, 4663, 12345, 58985, 0, 58984, 58985, 23456, 497531, 713306, 0, 137421, 276842, 436463, 575884, 713305, 713306, 1234567, 1810675, 2907844, 4002993, 6197531, 8367727
Offset: 1
For the fourth (n=4) row, which relates to base-4 four-digit {0, 1, 2, 3} distinct permutations, there are A039649(p) pairs where p = n-1 and thus for n=4, p=3, A039649(3)=3 - so there are three pairs in the fourth row.
Those pairs are supposed to have the same ratio, which can be calculated using the expression A221740(p)/A221741(p) = (p^2*(p+1)^p - (p+1)^p+1)/(-p^2 + p*(p+1)^p + (p+1)^p - p - 1), which for n=4 (p = n-1 = 3) yields 19/9 = 2.111.
The exhaustive computer program featured in the link finds that in decimal notation those three pairs with the ratio 19/9 = 2.111... are:
(1) {114,54}; (2) {57,27}; (3) {228,108}
In base-4 notation, those 3 pairs of distinct permutations are:
(1) {1302, 0312}; (2) {0321,0123}; (3) {3210,1230};
Now we calculate the fourth row terms per the sequence's definition:
(1302-0123)/9 = 131; (0312-0123)/9 = 21; (0321-0123)/9 = 22; (0123-0123)/9 = 0; (3210-0123)/9 = 343; (1230-0123)/9 = 123;
Thus, for the fourth row (n=4), which corresponds to base 4 (note that rows in the table are counted starting with n=2, which corresponds to base 2) we get the following 6 (three pairs) sequence terms, presented as sorted in ascending order: 0, 21, 22, 123, 131, 343, ...
A358314
Triangle T(n,k) read by rows where T(2m - 1,k) = (A051845(2m - 1,k))/(2m - 1) and T(2m,k) = A051845(2m,k)/m for m > 0, k > 0.
Original entry on oeis.org
1, 5, 7, 9, 10, 13, 15, 18, 19, 97, 99, 107, 111, 119, 121, 147, 149, 167, 173, 179, 183, 207, 211, 217, 223, 241, 243, 269, 271, 279, 283, 373, 374, 379, 381, 386, 387, 409, 410, 421, 424, 428, 430, 451, 453, 457, 460, 471
Offset: 1
Triangle begins:
k=1 k=2 k=3 ...
n=1: 1;
n=2: 5, 7;
n=3: 9, 10, ..., 19;
n=4: 97, 99, 107, ..., 283;
n=5: 373, 374, 379, 381, ..., 471;
...
Showing 1-4 of 4 results.
Comments