cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A051846 Digits 1..n in strict descending order n..1 interpreted in base n+1.

Original entry on oeis.org

1, 7, 57, 586, 7465, 114381, 2054353, 42374116, 987654321, 25678050355, 736867805641, 23136292864686, 789018236134297, 29043982525261081, 1147797409030816545, 48471109094902544776, 2178347851919531492065, 103805969587115219182431
Offset: 1

Views

Author

Antti Karttunen, Dec 13 1999

Keywords

Comments

All odd-indexed (2n+1) terms are divisible by (2n+1). See A051847.
All even-indexed (2n) terms are divisible by n. - Alexander R. Povolotsky, Oct 20 2022

Examples

			a(1) = 1,
a(2) = 2*3 + 1 = 7,
a(3) = 3*(4^2) + 2*4 + 1 = 57,
a(4) = 4*(5^3) + 3*(5^2) + 2*5 + 1 = 586.
		

Crossrefs

The right edge of A051845.

Programs

  • Maple
    a(n) := proc(n) local i; add(i*((n+1)^(i-1)),i=1..n); end;
  • Mathematica
    Array[Sum[i*(# + 1)^(i - 1), {i, #}] &, 18] (* Michael De Vlieger, Apr 04 2024 *)
  • Maxima
    makelist(((n+1)^(n+1)*(n-1) + 1)/n^2,n,1,20); /* Martin Ettl, Jan 25 2013 */
    
  • PARI
    a(n)=((n+1)^(n+1)*(n-1)+1)/n^2
    
  • Python
    def a(n): return sum((i+1)*(n+1)**i for i in range(n))
    print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Apr 10 2022

Formula

a(n) = Sum_{i=1..n} i*(n+1)^(i-1).
a(n) = ((n+1)^(n+1)*(n-1) + 1)/n^2 = A062806(n+1)/(n+1) - (n+1)^(n+1). - Benoit Cloitre, Sep 28 2002
a(n) = A028310(n-1) * A023811(n+1) + A199969(n+1). - M. F. Hasler, Jan 22 2013
a(n) = (n-1) * A058128(n+1) + 1. - Seiichi Manyama, Apr 10 2022

Extensions

Minor edits in formulas by M. F. Hasler, Oct 11 2019

A051848 Bisection of A023811, divided by the term position.

Original entry on oeis.org

1, 9, 373, 48913, 13717421, 6698798233, 5057809205989, 5465701947765793, 8008631808527689309, 15287592943577781017641, 36867279706750843040346261, 109619115381793714510485861169, 393991653133258067890987154457613, 1683967033137904529927995135566966713
Offset: 1

Views

Author

Antti Karttunen, Dec 13 1999

Keywords

Crossrefs

Programs

Formula

a(n) = A023811(2n)/(2n-1). [Corrected by Alexander R. Povolotsky, Oct 15 2022]
a(n) = A221741(2n-1). - Alexander R. Povolotsky, Oct 15 2022

Extensions

a(13) and a(14) added by Alexander R. Povolotsky, Oct 16 2022
Showing 1-2 of 2 results.