cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214429 Integers of the form (k^2 - 49) / 120.

Original entry on oeis.org

0, 1, 2, 4, 11, 15, 18, 23, 37, 44, 49, 57, 78, 88, 95, 106, 134, 147, 156, 170, 205, 221, 232, 249, 291, 310, 323, 343, 392, 414, 429, 452, 508, 533, 550, 576, 639, 667, 686, 715, 785, 816, 837, 869, 946, 980, 1003, 1038, 1122, 1159, 1184, 1222, 1313, 1353
Offset: 0

Views

Author

Michael Somos, Jul 17 2012

Keywords

Comments

From Peter Bala, Dec 26 2024: (Start)
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^n)/( (1 - q^(10*n-4))*(1 - q^(10*n-6)) ) = 1 - q - q^2 + q^4 + q^11 - q^15 - q^18 + + - - ... (by the quintuple product identity).
The numbers 2*a(n) are the exponents in the expansion of Sum_{n >= 0} q^(n*(n+2)) * Product_{k >= 2*n+2} 1 - q^k = 1 - q^2 - q^4 + q^8 + q^22 - q^30 - q^36 + + - - .... See Andrews et al., p. 591, Exercise 6(b) (but note that the left side of the identity should be Sum_{n >= 0} q^(n^2+2*n)/(q; q)_(2*n+1)). (End)

References

  • George E. Andrews, Richard Askey, Ranjan Roy, Special Functions, Cambridge University Press, 1999.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+x+2*x^2+7*x^3+2*x^4+x^5+x^6)/((1-x)*(1-x^4)^2)));  // G. C. Greubel, Aug 10 2018
  • Maple
    A214429 := proc(q) local n;
    for n from 0 to q do
     if type(sqrt(120*n+49), integer) then print(n);
    fi; od; end:
    A214429(1500); # Peter Bala, Dec 26 2024
  • Mathematica
    CoefficientList[Series[x*(1+x+2*x^2+7*x^3+2*x^4+x^5+x^6)/((1-x)*(1- x^4)^2), {x,0,50}], x] (* G. C. Greubel, Aug 10 2018 *)
    Select[(Range[0,500]^2-49)/120,IntegerQ] (* or *) LinearRecurrence[ {1,0,0,2,-2,0,0,-1,1},{0,1,2,4,11,15,18,23,37},80] (* Harvey P. Dale, Oct 23 2019 *)
  • PARI
    {a(n) = (((n*3 + 1) \ 4 * 10 + 5 + 2*(-1)^n)^2 - 49) / 120 }
    

Formula

G.f.: x * (1 + x + 2*x^2 + 7*x^3 + 2*x^4 + x^5 + x^6) / ((1 - x) * (1 - x^4)^2).
a(n) = 2*a(n-4) - a(n-8) + 15 = a(-1 - n).
From Peter Bala, Dec 26 2024: (Start)
a(n) is quasi-polynomial in n:
a(4*n) = n*(15*n + 7)/2; a(4*n+1) = (3*n + 2)*(5*n + 1)/2;
a(4*n+2) = (3*n + 1)*(5*n + 4)/2; a(4*n+3) = (n + 1)*(15*n + 8)/2.
For 0 <= k <= 3, a(4*n+k) = (N_k(n)^2 - 49)/120, where N_0(n) = 30*n + 7, N_1(n) = 30*n + 13, N_2(n) = 30*n + 17 and N_3(n) = 30*n + 23. (End)