cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214551 Reed Kelly's sequence: a(n) = (a(n-1) + a(n-3))/gcd(a(n-1), a(n-3)) with a(0) = a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 3, 2, 3, 2, 2, 5, 7, 9, 14, 3, 4, 9, 4, 2, 11, 15, 17, 28, 43, 60, 22, 65, 25, 47, 112, 137, 184, 37, 174, 179, 216, 65, 244, 115, 36, 70, 37, 73, 143, 180, 253, 36, 6, 259, 295, 301, 80, 75, 376, 57, 44, 105, 54, 49, 22, 38, 87, 109, 147
Offset: 0

Views

Author

Reed Kelly, Jul 20 2012

Keywords

Comments

Like Narayana's Cows sequence A000930, except that the sums are divided by the greatest common divisor (gcd) of the prior terms.
It is a strong conjecture that 8 and 10 are missing from this sequence, but it would be nice to have a proof! See A214321 for the conjectured values. [I have often referred to this as "Reed Kelly's sequence" in talks.] - N. J. A. Sloane, Feb 18 2017

Examples

			a(14)=9, a(16)=3, therefore a(17)=(9+3)/gcd(9,3) = 12/3 = 4.
a(24)=28, a(26)=60, therefore a(27)=(28+60)/gcd(28,60) = 88/4 = 22.
		

Crossrefs

Similar to A000930. Cf. A341312, A341313, which are also similar.
Starting with a(2) = 3 gives A214626. - Reinhard Zumkeller, Jul 23 2012

Programs

  • Haskell
    a214551 n = a214551_list !! n
    a214551_list = 1 : 1 : 1 : zipWith f a214551_list (drop 2 a214551_list)
       where f u v = (u + v) `div` gcd u v
    -- Reinhard Zumkeller, Jul 23 2012
    
  • Maple
    a:= proc(n) a(n):= `if`(n<3, 1, (a(n-1)+a(n-3))/igcd(a(n-1), a(n-3))) end:
    seq(a(n), n=0..100); # Alois P. Heinz, Oct 18 2012
  • Mathematica
    t = {1, 1, 1}; Do[AppendTo[t, (t[[-1]] + t[[-3]])/GCD[t[[-1]], t[[-3]]]], {100}]
    f[l_List] := Append[l, (l[[-1]] + l[[-3]])/GCD[l[[-1]], l[[-3]]]]; Nest[f, {1, 1, 1}, 62] (* Robert G. Wilson v, Jul 23 2012 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==1,a[n]==(a[n-1]+a[n-3])/GCD[ a[n-1], a[n-3]]},a,{n,70}] (* Harvey P. Dale, May 06 2014 *)
  • PARI
    first(n)=my(v=vector(n+1)); for(i=1,min(n,3),v[i]=1); for(i=4,#v, v[i]=(v[i-1]+v[i-3])/gcd(v[n-1],v[i-3])); v \\ Charles R Greathouse IV, Jun 21 2017
    
  • Perl
    use bignum;
    my @seq = (1, 1, 1);
    print "1 1\n2 1\n3 1\n";
    for ( my $i = 3; $i < 400; $i++ )
    {
        my $next = ( $seq[$i-1] + $seq[$i-3] ) /
            gcd( $seq[$i-1], $seq[$i-3] );
        my $ind = $i+1;
        print "$ind $next\n";
        push( @seq, $next );
    }
    sub gcd {
        my ($x, $y) = @_;
        ($x, $y) = ($y, $x % $y) while $y;
        return $x;
    }
    
  • Python
    from math import gcd
    def aupton(nn):
        alst = [1, 1, 1]
        for n in range(3, nn+1):
            alst.append((alst[n-1] + alst[n-3])//gcd(alst[n-1], alst[n-3]))
        return alst
    print(aupton(64)) # Michael S. Branicky, Mar 28 2022
  • Sage
    def A214551Rec():
        x, y, z = 1, 1, 1
        yield x
        while True:
            x, y, z =  y, z, (z + x)//gcd(z, x)
            yield x
    A214551 = A214551Rec();
    print([next(A214551) for  in range(65)])  # _Peter Luschny, Oct 18 2012
    

Formula

It appears that, very roughly, a(n) ~ constant*exp(0.123...*n). - N. J. A. Sloane, Sep 07 2012. See next comment for more precise estimate.
If a(n)^(1/n) converges the limit should be near 1.126 (see link). - Benoit Cloitre, Nov 08 2015
Robert G. Wilson v reports that at around 10^7 terms a(n)^(1/n) is about exp(1/8.4). - N. J. A. Sloane, May 05 2021