A214663 Number of permutations of 1..n for which the partial sums of signed displacements do not exceed 2.
1, 1, 2, 6, 12, 25, 57, 124, 268, 588, 1285, 2801, 6118, 13362, 29168, 63685, 139057, 303608, 662888, 1447352, 3160121, 6899745, 15064810, 32892270, 71816436, 156802881, 342360937, 747505396, 1632091412, 3563482500, 7780451037, 16987713169, 37090703118, 80983251898
Offset: 0
Examples
a(4) = 12: 1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 3124, 3142, 3214. The ten 4-permutations starting with 4 or ending with 1, as well as 2413 and 3412, do not comply.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- László Németh and Dragan Stevanović, Graph solution of system of recurrence equations, Research Gate, 2023. See Table 1 at p. 3.
- Kai Ting Keshia Yap, David Wehlau, and Imed Zaguia, Permutations Avoiding Certain Partially-ordered Patterns, arXiv:2101.12061 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (1,1,3,1).
Crossrefs
Column k=3 of A276837.
Programs
-
Maple
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <1|3|1|1>>^n)[4, 4]: seq(a(n), n=0..40); # Alois P. Heinz, Jul 25 2012
-
Mathematica
CoefficientList[Series[1/(1 - x - x^2 - 3 x^3 - x^4), {x, 0, 37}], x] LinearRecurrence[{1,1,3,1},{1,1,2,6},40] (* Harvey P. Dale, Apr 26 2019 *)
Formula
G.f.: 1/(1-x-x^2-3*x^3-x^4).
Comments