A276837 Number A(n,k) of permutations of [n] such that for each cycle c the smallest integer interval containing all elements of c has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 6, 5, 1, 0, 1, 1, 2, 6, 12, 8, 1, 0, 1, 1, 2, 6, 24, 25, 13, 1, 0, 1, 1, 2, 6, 24, 60, 57, 21, 1, 0, 1, 1, 2, 6, 24, 120, 150, 124, 34, 1, 0, 1, 1, 2, 6, 24, 120, 360, 399, 268, 55, 1, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 2, 2, 2, 2, 2, 2, ... 0, 1, 3, 6, 6, 6, 6, 6, 6, ... 0, 1, 5, 12, 24, 24, 24, 24, 24, ... 0, 1, 8, 25, 60, 120, 120, 120, 120, ... 0, 1, 13, 57, 150, 360, 720, 720, 720, ... 0, 1, 21, 124, 399, 1050, 2520, 5040, 5040, ... 0, 1, 34, 268, 1145, 3192, 8400, 20160, 40320, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..30, flattened
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019
Crossrefs
Formula
A(n,k+1) - A(n,k) = A263757(n,k) for n>0.
Comments