A214683 a(n+3) = -a(n+2) + 2a(n+1) + a(n) with a(0)=-1, a(1)=0, a(2)=-3.
-1, 0, -3, 2, -8, 9, -23, 33, -70, 113, -220, 376, -703, 1235, -2265, 4032, -7327, 13126, -23748, 42673, -77043, 138641, -250054, 450293, -811760, 1462292, -2635519, 4748343, -8557089, 15418256, -27784091, 50063514, -90213440, 162556377, -292919743
Offset: 0
Examples
From values of a(k), for k=0,1,..,5 we deduce that (c(1)/c(2))^(1/3)*A + (c(2)/c(4))^(1/3)*B + (c(4)/c(1))^(1/3)*C = 0 in the following cases: A=2c(1), B=2c(2), C=2c(4) or A=-1+(2c(1))^2+(2c(1))^3, B=-1+(2c(2))^2+(2c(2))^3, C=-1+(2c(3))^2+(2c(3))^3 or A=1+(2c(1))^4+(2c(1))^5, B=1+(2c(2))^4+(2c(2))^5, C=1+(2c(3))^4+(2c(3))^5.
References
- R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.
- Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
- Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Index entries for linear recurrences with constant coefficients, signature (-1,2,1).
Crossrefs
Cf. A006053.
Programs
-
Magma
a:=[-1,0,-3]; [ n le 3 select a[n] else -Self(n-1) + 2*Self(n-2) + Self(n-3): n in [1..35]]; // Marius A. Burtea, Oct 03 2019
-
Mathematica
LinearRecurrence[{-1, 2, 1}, {-1, 0, -3}, 40]
-
SageMath
@CachedFunction def a(n): # a = A214683 if (n<3): return (-1,0,-3)[n] else: return -a(n-1) + 2*a(n-2) + a(n-3) [a(n) for n in range(40)] # G. C. Greubel, Nov 25 2022
Formula
a(n+3) + a(n+2) - 2a(n+1) - a(n) = 0, a(0)=-1, a(1)=0, a(2)=-3.
G.f.: -(1+x+x^2)/(1+x-2*x^2-x^3).
Comments