cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A006054 a(n) = 2*a(n-1) + a(n-2) - a(n-3), with a(0) = a(1) = 0, a(2) = 1.

Original entry on oeis.org

0, 0, 1, 2, 5, 11, 25, 56, 126, 283, 636, 1429, 3211, 7215, 16212, 36428, 81853, 183922, 413269, 928607, 2086561, 4688460, 10534874, 23671647, 53189708, 119516189, 268550439, 603427359, 1355888968, 3046654856, 6845771321, 15382308530, 34563733525
Offset: 0

Views

Author

Keywords

Comments

Let u(k), v(k), w(k) be defined by u(1)=1, v(1)=0, w(1)=0 and u(k+1)=u(k)+v(k)+w(k), v(k+1)=u(k)+v(k), w(k+1)=u(k); then {u(n)} = 1,1,3,6,14,31,... (A006356 with an extra initial 1), {v(n)} = 0,1,2,5,11,25,... (this sequence with its initial 0 deleted) and {w(n)} = {u(n)} prefixed by an extra 0 = A077998 with an extra initial 0. - Benoit Cloitre, Apr 05 2002. Also u(k)^2+v(k)^2+w(k)^2 = u(2k). - Gary W. Adamson, Dec 23 2003
Form the graph with matrix A=[1, 1, 1; 1, 0, 0; 1, 0, 1]. Then A006054 counts walks of length n between the vertex of degree 1 and the vertex of degree 3. - Paul Barry, Oct 02 2004
Form the digraph with matrix [1,1,0; 1,0,1; 1,1,1]. A006054(n) counts walks of length n between the vertices with loops. - Paul Barry, Oct 15 2004
Nonzero terms = INVERT transform of (1, 1, 2, 2, 3, 3, ...). Example: 56 = (1, 1, 2, 5, 11, 25) dot (3, 3, 2, 2, 1, 1) = (3 + 3 + 4 + 10 + 11 + 25). - Gary W. Adamson, Apr 20 2009
-a(n+1) appears in the formula for the nonpositive powers of rho:= 2*cos(Pi/7), the ratio of the smaller diagonal in the heptagon to the side length s=2*sin(Pi/7), when expressed in the basis <1,rho,sigma>, with sigma:=rho^2-1, the ratio of the larger heptagon diagonal to the side length, as follows. rho^(-n) = C(n)*1 + C(n-1)*rho - a(n+1)*sigma, n >= 0, with C(n)=A077998(n), C(-1):=0. See the Steinbach reference, and a comment under A052547.
If, with the above notations, the power basis of the field Q(rho) is taken one has for nonpositive powers of rho, rho^(-n) = a(n+2)*1 + A077998(n-1)*rho - a(n+1)*rho^2. For nonnegative powers see A006053. See also the Steinbach reference. - Wolfdieter Lang, May 06 2011
a(n) appears also in the nonnegative powers of sigma,(defined in the above comment, where also the basis is given). See a comment in A106803.
The sequence b(n):=(-1)^(n+1)*a(n) forms the negative part (i.e., with nonpositive indices) of the sequence (-1)^n*A006053(n+1). In this way we obtain what we shall call the Ramanujan-type sequence number 2a for the argument 2*Pi/7 (see the comment to Witula's formula in A006053). We have b(n) = -2*b(n-1) + b(n-2) + b(n-3) and b(n) * 49^(1/3) = (c(1)/c(4))^(1/3) * (c(1))^(-n) + (c(2)/c(1))^(1/3) * (c(2))^(-n) + (c(4)/c(2))^(1/3) * (c(4))^(-n) = (c(2)/c(1))^(1/3) * (c(1))^(-n+1) + (c(4)/c(2))^(1/3) * (c(2))^(-n+1) + (c(1)/c(4))^(1/3) * (c(4))^(-n+1), where c(j) := 2*cos(2*Pi*j/7) (for the proof, see the comments to A215112). - Roman Witula, Aug 06 2012
(1, 1, 2, 5, 11, 25, 56, ...) * (1, 0, 1, 0, 1, ...) = the variant of A006356: (1, 1, 3, 6, 14, 31, ...). - Gary W. Adamson, May 15 2013
The limit of a(n+1)/a(n) for n -> infinity is, for all generic sequences with this recurrence of signature (2,1,-1), sigma = rho^2-1, approximately 2.246979603, the length ratio (largest diagonal)/side in the regular heptagon (7-gon). For rho = 2*cos(Pi/7) and sigma see a comment above, and the P. Steinbach reference. Proof: a(n+1)/a(n) = 2 + 1/(a(n)/a(n-1)) - 1/((a(n)/a(n-1))*(a(n-1)/a(n-2))), leading in the limit to sigma^3 -2*sigma^2 - sigma + 1, which is solved by sigma = rho^2-1, due to C(7, rho) = 0 , with the minimal polynomial C(7, x) = x^3 - x^2 - 2*x + 1 of rho (see A187360). - Wolfdieter Lang, Nov 07 2013
Numbers of straight-chain aliphatic amino acids involving single, double or triple bonds (allowing adjacent double bonds) when cis/trans isomerism is neglected. - Stefan Schuster, Apr 19 2018
Let A(r,n) be the total number of ordered arrangements of an n+r tiling of r red squares and white tiles of total length n, where the individual tile lengths can range from 1 to n. A(r,0) corresponds to a tiling of r red squares only, and so A(r,0) = 1. Also, A(r,n)=0 for n<0. Let A_1(r,n) = Sum_{j=0..n} A(r,j). Then the expansion of 1/(1 - 2*x - x^2 + x^3) is A_1(0,n) + A_1(1,n-2) + A_1(n-4) + ... = a(n) without the initial two 0's. In general, the expansion of 1/(1 - 2*x -x^k + x^(k+1)) is equal to Sum_{j>=0} A_1(j, n-j*k). - Gregory L. Simay, May 25 2018
For n>1, a(n) is the number of ways to tile a strip of length n-1 with one color of squares and dominos, two colors of trominos and quadrominos, 3 colors of 5-minos and 6-minos, and so on. - Greg Dresden and Zhiyu Zhang, Jun 26 2025

Examples

			G.f. = x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 56*x^7 + 126*x^8 + 283*x^9 + ... - _Michael Somos_, Jun 25 2018
		

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006054 n = a006053_list !! n
    a006054_list = 0 : 0 : 1 : zipWith (+) (map (2 *) $ drop 2 a006054_list)
       (zipWith (-) (tail a006054_list) a006054_list)
    -- Reinhard Zumkeller, Oct 14 2011
  • Maple
    A006054:=z**2/(1-2*z-z**2+z**3); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{2, 1, -1}, {0, 0, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *)
  • Maxima
    a(n):=if n<2 then 0 else if n=2 then 1 else b(n-2);
    b(n):=sum(sum(binomial(j,n-3*k+2*j)*(-1)^(j-k)*binomial(k,j)*2^(-n+3*k-j),j,0,k),k,1,n); /* Vladimir Kruchinin, May 05 2011 */
    
  • PARI
    x='x+O('x^66);
    concat([0, 0], Vec(x^2/(1-2*x-x^2+x^3))) \\ Joerg Arndt, May 05 2011
    

Formula

G.f.: x^2/(1-2*x-x^2+x^3).
Sum_{k=0..n+2} a(k) = A077850(n). - Philippe Deléham, Sep 07 2006
Let M = the 3 X 3 matrix [1,1,0; 1,2,1; 0,1,2], then M^n*[1,0,0] = [A080937(n-1), A094790(n), A006054(n-1)]. E.g., M^3*[1,0,0] = [5,9,5] = [A080937(2), A094790(3), A006054(2)]. - Gary W. Adamson, Feb 15 2006
a(n) = round(k*A006356(n-1)), for n>1, where k = 0.3568958678... = 1/(1+2*cos(Pi/7)). - Gary W. Adamson, Jun 06 2008
a(n+1) = A187070(2n+1) = A187068(2n+3). - L. Edson Jeffery, Mar 10 2011
a(n+3) = Sum_{k=1..n} Sum_{j=0..k} binomial(j,n-3*k+2*j)*(-1)^(j-k)*binomial(k,j)*2^(-n+3*k-j); a(0)=0, a(1)=0, a(2)=1. - Vladimir Kruchinin, May 05 2011
7*a(n) = (c(2)-c(4))*(1+c(1))^n + (c(4)-c(1))*(1+c(2))^n + (c(1)-c(2))*(1+c(4))^n, where c(j):=2*cos(2*Pi*j/7) - for the proof see Witula et al. papers. - Roman Witula, Aug 07 2012
a(n) = -A006053(1-n) for all n in Z. - Michael Somos, Jun 25 2018

A006053 a(n) = a(n-1) + 2*a(n-2) - a(n-3), with a(0) = a(1) = 0, a(2) = 1.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 9, 14, 28, 47, 89, 155, 286, 507, 924, 1652, 2993, 5373, 9707, 17460, 31501, 56714, 102256, 184183, 331981, 598091, 1077870, 1942071, 3499720, 6305992, 11363361, 20475625, 36896355, 66484244, 119801329, 215873462, 388991876, 700937471
Offset: 0

Views

Author

Keywords

Comments

a(n+1) = S(n) for n>=1, where S(n) is the number of 01-words of length n, having first letter 1, in which all runlengths of 1's are odd. Example: S(4) counts 1000, 1001, 1010, 1110. See A077865. - Clark Kimberling, Jun 26 2004
For n>=1, number of compositions of n into floor(j/2) kinds of j's (see g.f.). - Joerg Arndt, Jul 06 2011
Counts walks of length n between the first and second nodes of P_3, to which a loop has been added at the end. Let A be the adjacency matrix of the graph P_3 with a loop added at the end. A is a 'reverse Jordan matrix' [0,0,1; 0,1,1; 1,1,0]. a(n) is obtained by taking the (1,2) element of A^n. - Paul Barry, Jul 16 2004
Interleaves A094790 and A094789. - Paul Barry, Oct 30 2004
a(n) appears in the formula for the nonnegative powers of rho:= 2*cos(Pi/7), the ratio of the smaller diagonal in the heptagon to the side length s=2*sin(Pi/7), when expressed in the basis <1,rho,sigma>, with sigma:=rho^2-1, the ratio of the larger heptagon diagonal to the side length, as follows. rho^n = C(n)*1 + C(n+1)*rho + a(n)*sigma, n>=0, with C(n) = A052547(n-2). See the Steinbach reference, and a comment under A052547. - Wolfdieter Lang, Nov 25 2010
If with the above notations the power basis <1,rho,rho^2> of Q(rho) is used, nonnegative powers of rho are given by rho^n = -a(n-1)*1 + A052547(n-1)*rho + a(n)*rho^2. For negative powers see A006054. - Wolfdieter Lang, May 06 2011
-a(n-1) also appears in the formula for the nonpositive powers of sigma (see the above comment for the definition, and the Steinbach basis <1,rho,sigma>) as follows: sigma^(-n) = A(n)*1 -a(n+1)*rho -A(n-1)*sigma, with A(n) = A052547(n), A(-1):=0. - Wolfdieter Lang, Nov 25 2010

Examples

			G.f. = x^2 + x^3 + 3*x^4 + 4*x^5 + 9*x^6 + 14*x^7 + 28*x^8 + 47*x^9 + ...
Regarding the description "number of compositions of n into floor(j/2) kinds of j's," the a(6)=9 compositions of 6 are (2a, 2a, 2a), (3a, 3a), (2a, 4a), (2a, 4b), (4a, 2a), (4b, 2a), (6a), (6b), (6c). - _Bridget Tenner_, Feb 25 2022
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications (2012).

Crossrefs

Programs

  • Haskell
    a006053 n = a006053_list !! n
    a006053_list = 0 : 0 : 1 : zipWith (+) (drop 2 a006053_list)
       (zipWith (-) (map (2 *) $ tail a006053_list) a006053_list)
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Magma
    [ n eq 1 select 0 else n eq 2 select 0 else n eq 3 select 1 else Self(n-1) +2*Self(n-2) -Self(n-3): n in [1..40] ]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    a[0]:=0: a[1]:=0: a[2]:=1: for n from 3 to 40 do a[n]:=a[n-1]+2*a[n-2]-a[n-3] od:seq(a[n], n=0..40); # Emeric Deutsch
    A006053:=z**2/(1-z-2*z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{1,2,-1}, {0,0,1}, 50]  (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
  • PARI
    {a(n) = if( n<0, n = -1-n; polcoeff( -1 / (1 - 2*x - x^2 + x^3) + x * O(x^n), n), polcoeff( x^2 / (1 - x - 2*x^2 + x^3) + x * O(x^n), n))}; /* Michael Somos, Nov 30 2014 */
    
  • SageMath
    @CachedFunction
    def a(n): # a = A006053
        if (n<3): return (n//2)
        else: return a(n-1) + 2*a(n-2) - a(n-3)
    [a(n) for n in range(41)] # G. C. Greubel, Feb 12 2023

Formula

G.f.: x^2/(1 - x - 2*x^2 + x^3). - Emeric Deutsch, Dec 14 2004
a(n) = c^(n-2) - a(n-1)*(c-1) + (1/c)*a(n-2) for n > 3 where c = 2*cos(Pi/7). Example: a(7) = 14 = c^5 - 9*(c-1) + 4/c = 18.997607... - 7.21743962... + 2.219832528... - Gary W. Adamson, Jan 24 2010
G.f.: -1 + 1/(1 - Sum_{j>=1} floor(j/2)*x^j). - Joerg Arndt, Jul 06 2011
a(n+2) = A094790(n/2+1)*(1+(-1)^n)/2 + A094789((n+1)/2)*(1-(-1)^n)/2. - Paul Barry, Oct 30 2004
First differences of A028495. - Floor van Lamoen, Nov 02 2005
a(n) = A187065(2*n+1); a(n+1) = A187066(2*n+1) = A187067(2*n). - L. Edson Jeffery, Mar 16 2011
a(n) = 2^n*(c(1)^(n-1)*(c(1)+c(2)) + c(3)^(n-1)*(c(3)+c(6)) + c(5)^(n-1)*(c(5)+c(4)) )/7, with c(j):=cos(Pi*j/7). - Herbert Kociemba, Dec 18 2011
a(n+1)*(-1)^n*49^(1/3) = (c(1)/c(4))^(1/3)*(2*c(1))^n + (c(2)/c(1))^(1/3)*(2*c(2))^n + (c(4)/c(2))^(1/3)*(2c(4))^n = (c(2)/c(1))^(1/3)*(2*c(1))^(n+1) + (c(4)/c(2))^(1/3)*(c(2))^(n+1) + (c(1)/c(4))^(1/3)*(2*c(4))^(n+1), where c(j) := cos(2Pi*j/7); for the proof, see Witula et al.'s papers. - Roman Witula, Jul 21 2012
The previous formula connects the sequence a(n) with A214683, A215076, A215100, A120757. We may call a(n) the Ramanujan-type sequence number 2 for the argument 2*Pi/7. - Roman Witula, Aug 02 2012
a(n) = -A006054(1-n) for all n in Z. - Michael Somos, Nov 30 2014
G.f.: x^2 / (1 - x / (1 - 2*x / (1 + 5*x / (2 - x / (5 - 2*x))))). - Michael Somos, Jan 20 2017
a(n) ~ r*c^n, where r=0.241717... is one of the roots of 49*x^3-7*x+1, and c=2*cos(Pi/7) (as in Gary W. Adamson's formula). - Daniel Checa, Nov 04 2022
a(2n-1) = 2*a(n+1)*a(n) - a(n)^2 - a(n-1)^2. - Richard Peterson, May 25 2023

Extensions

More terms from Emeric Deutsch, Dec 14 2004
Typo in definition fixed by Reinhard Zumkeller, Oct 14 2011

A214699 a(n) = 3*a(n-2) - a(n-3) with a(0)=0, a(1)=3, a(2)=0.

Original entry on oeis.org

0, 3, 0, 9, -3, 27, -18, 84, -81, 270, -327, 891, -1251, 3000, -4644, 10251, -16932, 35397, -61047, 123123, -218538, 430416, -778737, 1509786, -2766627, 5308095, -9809667, 18690912, -34737096, 65882403, -122902200, 232384305, -434589003, 820055115, -1536151314
Offset: 0

Views

Author

Roman Witula, Jul 26 2012

Keywords

Comments

All a(n) are divisible by 3.
The Ramanujan-type sequence number 1 for the argument 2*Pi/9 defined by the following identity:
3^(1/3)*a(n) = (c(1)/c(2))^(1/3)*c(1)^n + (c(2)/c(4))^(1/3)*c(2)^n + (c(4)/c(1))^(1/3)*c(4)^n = -( (c(1)/c(2))^(1/3)*c(2)^(n+1) + (c(2)/c(4))^(1/3)*c(4)^(n+1) + (c(4)/c(1))^(1/3)*c(1)^(n+1) ), where c(j) := 2*cos(2*Pi*j/9).
The definitions of other Ramanujan-type sequences, for the argument of 2*Pi/9 in one's, are given in the Crossrefs section.

Examples

			We have a(2) = a(1) + a(4) = a(4) + a(7) + a(8) = -a(3) + a(5) + a(6) = 0, which implies
(c(1)/c(2))^(1/3)*c(1)^2 + (c(2)/c(4))^(1/3)*c(2)^2 + (c(4)/c(1))^(1/3)*c(4)^2 = (c(1)/c(2))^(1/3)*(c(1) + c(1)^4) + (c(2)/c(4))^(1/3)*(c(2) + c(2)^4) + (c(4)/c(1))^(1/3)*(c(4) + c(4)^4) = (c(1)/c(2))^(1/3)*(c(1)^4 + c(1)^7 + c(1)^8) + (c(2)/c(4))^(1/3)*(c(2)^4 + c(2)^7 + c(2)^8) + (c(4)/c(1))^(1/3)*(c(4)^4 + c(4)^7 + c(4)^8) = 0.
Moreover we have 3000*3^(1/3) = (c(1)/c(2))^(1/3)*c(1)^13 + (c(2)/c(4))^(1/3)*c(2)^13 + (c(4)/c(1))^(1/3)*c(4)^13. - _Roman Witula_, Oct 06 2012
		

References

  • R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012

Crossrefs

Programs

  • Magma
    [n le 3 select 3*(1+(-1)^n)/2 else 3*Self(n-2) - Self(n-3): n in [1..40]]; // G. C. Greubel, Jan 08 2024
    
  • Mathematica
    LinearRecurrence[{0,3,-1}, {0,3,0}, 30]
    CoefficientList[Series[3*x/(1 - 3*x^2 + x^3),{x,0,34}],x] (* James C. McMahon, Jan 09 2024 *)
  • SageMath
    def a(n): # a=A214699
        if (n<3): return 3*(n%2)
        else: return 3*a(n-2) - a(n-3)
    [a(n) for n in range(41)] # G. C. Greubel, Jan 08 2024

Formula

G.f.: 3*x/(1 - 3*x^2 + x^3).
From Roman Witula, Oct 06 2012: (Start)
a(n+1) = 3*(-1)^n*A052931(n), which from recurrence relations for a(n) and A052931 can easily be proved inductively.
a(n) = -A214779(n+1) - A214779(n). (End)

A215076 a(n) = 3*a(n-1) + 4*a(n-2) + a(n-3) with a(0)=3, a(1)=3, a(2)=17.

Original entry on oeis.org

3, 3, 17, 66, 269, 1088, 4406, 17839, 72229, 292449, 1184102, 4794331, 19411850, 78596976, 318232659, 1288497731, 5217020805, 21123285998, 85526438945, 346289481632, 1402097486674, 5676976825495, 22985609904813, 93066834503093, 376819919954026, 1525712707779263
Offset: 0

Views

Author

Roman Witula, Aug 02 2012

Keywords

Comments

We call the sequence a(n) the Ramanujan-type sequence number 3 for the argument 2Pi/7 (see A214683 and Witula's papers for details). Since a(n)=as(3n), bs(3n)=cs(3n)=0, where the sequence as(n) and its two conjugate sequences bs(n) and cs(n) are defined in the comments to the sequence A214683 we obtain the following formula a(n) = (c(1)/c(4))^n + (c(2)/c(1))^n + (c(4)/c(2))^n, where c(j) := Cos(2*Pi*j/7). It is interesting that if we set b(n):= (c(1)/c(2))^n + (c(2)/c(4))^n + (c(4)/c(1))^n, for n=0,1,..., and we extend the definition of discussed sequence a(n) to the negative indices by the same formula, i.e.: a(n)=a(n+3)-3*a(n+2)-4*a(n+1), n=-1,-2,..., then we get b(n)=a(-n) for every n=0,1,... (see also example below).

Examples

			We have (c(1)/c(2)) + (c(2)/c(4)) + (c(4)/c(1)) = (a(1)^2 - a(2))/2 = -4, and then (c(1)/c(2))^2 + (c(2)/c(4))^2 + (c(4)/c(1))^2 = 16 - 2*a(1) = 10.
		

References

  • R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012

Crossrefs

Cf. A214683.

Programs

  • Mathematica
    LinearRecurrence[{3,4,1},{3,3,17},40]
  • PARI
    Vec((-3+6*x+4*x^2)/(-1+3*x+4*x^2+x^3) + O(x^30)) \\ Michel Marcus, Apr 20 2016
    
  • PARI
    polsym(1+4*x+3*x^2-x^3, 22) \\ Joerg Arndt, Jul 09 2020
    
  • SageMath
    @CachedFunction
    def a(n): # a = A215076
        if (n<3): return (3,3,17)[n]
        else: return 3*a(n-1) + 4*a(n-2) + a(n-3)
    [a(n) for n in range(40)] # G. C. Greubel, Nov 25 2022

Formula

G.f.: (3-6*x-4*x^2)/(1-3*x-4*x^2-x^3).
From Kai Wang, Jul 08 2020: (Start)
a(n) = Sum_{i+2j+3k=n} 3^i*4^j*n*(i+j+k-1)!/(i!*j!*k!).
a(n) = (-1)^n*(3*A122600(n) + 6*A122600(n-1) - 4*A122600(n-2)) for n > 1. (End)
a(n) = r^n + s^n + t^n where {r,s,t} are the roots of 1+4*x+3*x^2-x^3. - Joerg Arndt, Jul 09 2020
a(n) = 3*a(n-1) + 4*a(n-2) + a(n-3). - Wesley Ivan Hurt, Jul 09 2020

Extensions

More terms from Michel Marcus, Apr 20 2016

A120757 Expansion of x^2*(2+x)/(1-3*x-4*x^2-x^3).

Original entry on oeis.org

0, 2, 7, 29, 117, 474, 1919, 7770, 31460, 127379, 515747, 2088217, 8455018, 34233669, 138609296, 561217582, 2272323599, 9200450421, 37251863241, 150829715006, 610697048403, 2472661868474, 10011603514040, 40536155064419
Offset: 1

Views

Author

Keywords

Comments

The (1,1)-entry of the matrix M^n, where M is the 3 X 3 matrix [0,1,1; 1,1,2; 1,2,2].
a(n)/a(n-1) tends to 4.0489173...an eigenvalue of M and a root to the characteristic polynomial x^3 - 3x^2 - 4x - 1.
C(n):=a(n), with a(0):=1 (hence the o.g.f. for C(n) is (1-3*x-2*x^2)/(1-3*x-4*x^2-x^3)), appears in the following formula for the nonnegative powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7) = rho^2-1 are the ratios of the smaller and larger diagonal length to the side length in a regular 7-gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field. (rho*sigma)^n = C(n) + B(n)*rho + A(n)*sigma,n>=0, with B(n)= |A122600(n-1)|, B(0)=0, and A(n)= A181879(n). For the nonpositive powers see A085810(n)*(-1)^n, A181880(n-2)*(-1)^n and A116423(n+1)*(-1)^(n+1), respectively. See also a comment under A052547.
We have a(n)=cs(3n+1), where the sequence cs(n) and its two conjugate sequences as(n) and bs(n) are defined in the comments to the sequence A214683 (see also A215076, A215100, A006053). We call the sequence a(n) the Ramanujan-type sequence number 5 for the argument 2Pi/7. Since as(3n+1)=bs(3n+1)=0, we obtain the following relation: 49^(1/3)*a(n) = (c(1)/c(4))^(n + 1/3) + (c(4)/c(2))^(n + 1/3) + (c(2)/c(1))^(n + 1/3), where c(j) := Cos(2Pi/7) (for more details and proofs see Witula et al.'s papers). - Roman Witula, Aug 02 2012

Examples

			a(7)=1919 because M^7= [1919,3458,4312;3458,6231,7770;4312,7770,9689].
		

References

  • R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Programs

  • Magma
    a:=[0,2,7]; [ n le 3 select a[n] else 3*Self(n-1) + 4*Self(n-2) + Self(n-3): n in [1..25]]; // Marius A. Burtea, Oct 03 2019
    
  • Maple
    with(linalg): M[1]:=matrix(3,3,[0,1,1,1,1,2,1,2,2]): for n from 2 to 25 do M[n]:=multiply(M[1],M[n-1]) od: seq(M[n][1,1],n=1..25);
  • Mathematica
    LinearRecurrence[{3,4,1},{0,2,7},40] (* Roman Witula, Aug 02 2012 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,4,3]^(n-1)*[0;2;7])[1,1] \\ Charles R Greathouse IV, Jun 22 2016
    
  • SageMath
    @CachedFunction
    def a(n): # a = A120757
        if (n<3): return (0,2,7)[n]
        else: return 3*a(n-1) + 4*a(n-2) + a(n-3)
    [a(n) for n in range(40)] # G. C. Greubel, Nov 25 2022

Formula

a(n) = 3*a(n-1) + 4*a(n-2) + a(n-3) (follows from the minimal polynomial of the matrix M). See also the o.g.f. given in the name.

Extensions

Edited by N. J. A. Sloane, Dec 03 2006
New name, old name as comment; o.g.f.; reference.

A215664 a(n) = 3*a(n-2) - a(n-3), with a(0)=3, a(1)=0, and a(2)=6.

Original entry on oeis.org

3, 0, 6, -3, 18, -15, 57, -63, 186, -246, 621, -924, 2109, -3393, 7251, -12288, 25146, -44115, 87726, -157491, 307293, -560199, 1079370, -1987890, 3798309, -7043040, 13382817, -24927429, 47191491, -88165104, 166501902, -311686803, 587670810, -1101562311
Offset: 0

Views

Author

Roman Witula, Aug 20 2012

Keywords

Comments

The Berndt-type sequence number 5 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. The respective sums with negative powers of the cosines form the sequence A215885. Additionally if we set b(n) = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n and c(n) = c(4)*c(2)^n + c(1)*c(4)^n + c(2)*c(1)^n, where c(j):=2*cos(2*Pi*j/9), then the following system of recurrence equations holds true: b(n) - b(n+1) = a(n), a(n+1) - a(n) = c(n+1), a(n+2) - 2*a(n)=c(n). All three sequences satisfy the same recurrence relation: X(n+3) - 3*X(n+1) + X(n) = 0. Moreover we have a(n+1) + A215665(n) + A215666(n) = 0 since c(1) + c(2) + c(4) = 0, b(n)=A215665(n) and c(n)=A215666(n).
If X(n) = 3*X(n-2) - X(n-3), n in Z, with X(n) = a(n) for every n=0,1,..., then X(-n) = A215885(n) for every n=0,1,...
From initial values and the recurrence formula we deduce that a(n)/3 and a(3n+1)/9 are all integers. We have a(n)=3*(-1)^n *A188048(n) and a(2n)=A215455(n). Furthermore the following decomposition holds: (X - c(1)^n)*(X - c(2)^n)*(X - c(4)^n) = X^3 - a(n)*X^2 + ((a(n)^2 - a(2*n))/2)*X + (-1)^(n+1), which implies the relation (c(1)*c(2))^n + (c(1)*c(4))^n + (c(2)*c(4))^n = (-c(1))^(-n) + (-c(2))^(-n) + (-c(4))^(-n) = (a(n)^2 - a(2*n))/2.

Examples

			We have c(1)^2 + c(2)^2 + c(4)^2 + 2*(c(1)^3 + c(2)^3 + c(4)^3) = 0 and 3*a(7) + a(8) = a(3).
		

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,-1}, {3,0,6}, 50]
  • PARI
    Vec(3*(1-x^2)/(1-3*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

a(n) = c(1)^n + c(2)^n + c(4)^n, where c(j) := 2*cos(2*Pi*j/9).
G.f.: 3*(1-x^2)/(1-3*x^2+x^3).

A215512 a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3), with a(0)=1, a(1)=3, a(2)=8.

Original entry on oeis.org

1, 3, 8, 23, 70, 220, 703, 2265, 7327, 23748, 77043, 250054, 811760, 2635519, 8557089, 27784091, 90213440, 292919743, 951102166, 3088205812, 10027335807, 32558546329, 105716922615, 343260670908, 1114560365179, 3618954723062, 11750672095144, 38154192502527
Offset: 0

Views

Author

Roman Witula, Aug 14 2012

Keywords

Comments

The Berndt-type sequence number 7 for the argument 2Pi/7 defined by the relation: sqrt(7)*a(n) = s(1)*c(4)^(2*n) + s(2)*c(1)^(2*n) + s(4)*c(2)^(2*n), where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7). If we additionally defined the following sequences:
sqrt(7)*b(n) = s(2)*c(4)^(2*n) + s(4)*c(1)^(2*n) + s(1)*c(2)^(2*n),
sqrt(7)*c(n) = s(4)*c(4)^(2*n) + s(1)*c(1)^(2*n) + s(2)*c(2)^(2*n), and
sqrt(7)*a1(n) = s(1)*c(4)^(2*n+1) + s(2)*c(1)^(2*n+1) + s(4)*c(2)^(2*n+1),
sqrt(7)*b1(n) = s(2)*c(4)^(2*n+1) + s(4)*c(1)^(2*n+1) + s(1)*c(2)^(2*n+1),
sqrt(7)*c1(n) = s(4)*c(4)^(2*n+1) + s(1)*c(1)^(2*n+1) + s(2)*c(2)^(2*n+1), then the following simple relationships between elements of these sequences hold true: a(n)=c1(n), c(n+1)=a1(n), -a(n)-b(n)=b1(n), which means that the sequences a1(n), b1(n), and c1(n) are completely and in very simple way determined by the sequences a(n), b(n) and c(n). However the last one's satisfy the following system of recurrence equations: a(n+1) = 2*a(n) + b(n), b(n+1) = a(n) + 2*b(n) - c(n), c(n+1) = c(n) - b(n). We have b(n)=A215694(n) and c(n)=A215695(n).
We note that a(n)=A000782(n) for every n=0,1,...,4 and A000782(5)-a(5)=2.
From general recurrence relation: a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3), i.e. a(n) = 5*(a(n-1)-a(n-2)) + (a(n-3)-a(n-2)) the following summation formula can be easily obtained: sum{k=3,..,n} a(k) = 5*a(n-1)-a(n-2)+a(0)-5*a(1). Hence in discussed sequence it follows that: sum{k=3,..,n} a(k) = 5*a(n-1) - a(n-2) - 14.

Examples

			We have a(6) = 10*a(4)+a(1), a(5) = 11*(a(3)-a(1)), a(10)-a(4)+a(3)+a(1)+a(0) = 77*10^3, and a(11)-a(4)+a(3)-a(2)+a(0) = 25*10^4 = (5^6)*(2^4).
		

Crossrefs

Programs

  • Magma
    I:=[1,3,8]; [n le 3 select I[n] else 5*Self(n-1) - 6*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 23 2018
  • Mathematica
    LinearRecurrence[{5,-6,1}, {1,3,8}, 50]
  • PARI
    x='x+O('x^30); Vec((1-2*x-x^2)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 23 2018
    

Formula

G.f.: (1-2*x-x^2)/(1-5*x+6*x^2-x^3).

A214779 a(n) = 3*a(n-2) - a(n-3) with a(0)=-1, a(1)=1, a(2)=-4.

Original entry on oeis.org

-1, 1, -4, 4, -13, 16, -43, 61, -145, 226, -496, 823, -1714, 2965, -5965, 10609, -20860, 37792, -73189, 134236, -257359, 475897, -906313, 1685050, -3194836, 5961463, -11269558, 21079225, -39770137, 74507233, -140389636, 263291836, -495676141, 930265144
Offset: 0

Views

Author

Roman Witula, Jul 28 2012

Keywords

Comments

Ramanujan-type sequence number 2 for argument 2Pi/9 is connected with the sequence A214699 (see also sequences A006053, A214683) - all have "similar" trigonometric description, for example in the case of a(n) the following formula hold true: 9^(1/3)*a(n) = (c(1)/c(4))^(1/3)*c(1)^n + (c(2)/c(1))^(1/3)*c(2)^n + (c(4)/c(2))^(1/3)*c(4)^n = -( (c(2)/c(1))^(1/3)*c(1)^(n+1) + (c(4)/c(2))^(1/3)*c(2)^(n+1) + (c(1)/c(4))^(1/3)*c(4)^(n+1) ), where c(j) := 2*Cos(2Pi*j/9) - for the proof see Witula et al.'s papers.
From a(0),A214699(0),a(2) and c(1)+c(2)+c(4)=0 we deduce
x^3 - 9^(1/3)*x - 1 = (x - (c(1)/c(2))^(1/3))*(x - (c(2)/c(4))^(1/3))*(x - (c(4)/c(1))^(1/3)), and
x^3 - 7*9^(1/3)*x - 1 = (x - (c(1)/c(2))^(1/3)*c(1)^2)*(x - (c(2)/c(4))^(1/3)*c(2)^2)*(x - (c(4)/c(1))^(1/3)*c(4)^2). We note that applying the Newton-Girard formulas to these polynomials two new sequences of real numbers can be discussed: X(n) := (c(1)/c(2))^(n/3) + (c(2)/c(4))^(n/3) + (c(4)/c(1))^(n/3), and Y(n) := ((c(1)/c(2))^(1/3)*c(1)^2)^n + ((c(2)/c(4))^(1/3)*c(2)^2)^n + ((c(4)/c(1))^(1/3)*c(4)^2)^n, where X(n)=9^(1/3)*X(n-2)+X(n-3), X(0)=3, X(1)=0, X(2)=2*9^(1/3), Y(n)=7*9^(1/3)Y(n-2)+Y(n-3), Y(0)=3, Y(1)=0, Y(2)=14*9^(1/3). It could be obtained the following decompositions: X(n) = ax(n) + 9^(1/3)*bx(n) + 81^(1/3)*cx(n), ax(0)=3, bx(0)=cx(0)=ax(1)=bx(1)=cx(1)=ax(2)=bx(2)=0, cx(2)=2, ax(n)=ax(n-3)+9*cx(n-2), bx(n)=bx(n-3)+ax(n-2), cx(n)=cx(n-3)+bx(n-2), and Y(n) = ay(n) + 9^(1/3)*by(n) + 81^(1/3)*cy(n), ay(0)=3, by(0)=cy(0)=ay(1)=by(1)=cy(1)=ay(2)=cy(2)=0, by(2)=14, ay(n)=ay(n-3)+63*cy(n-2), by(n)=by(n-3)+7*ay(n-2), cy(n)=cy(n-3)+7*by(n-2). All these new sequence of positive integers ax(n),bx(n),...,cy(n) will be presented separately as A214778, A214951, A214954. - Roman Witula, Sep 27 2012
We note that all sums a(n+1) + a(n) are divisible by 3, which easily from recurrence formula for a(n) follows. Then it can be deduced the formula a(n+1) + a(n) = -A214699(n). - Roman Witula, Oct 06 2012

Examples

			From a(0)=-1 and A214699(0)=0 we obtain (c(1)/c(4))^(2/3) + (c(2)/c(1))^(2/3) + (c(4)/c(2))^(2/3) = 3*3^(1/3), whereas from a(1)=-1 and A214699(1)=3*3^(1/3) we get (c(1)/c(4))^(2/3)*2c(2) + (c(2)/c(1))^(2/3)*2c(4) + (c(4)/c(2))^(2/3)*2c(1) = 3*3^(1/3).
		

References

  • R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 3, -1}, {-1, 1, -4}, 40] (* T. D. Noe, Jul 30 2012 *)

Formula

G.f.: -(1-x+x^2)/(1-3*x^2+x^3).

A215665 a(n) = 3*a(n-2) - a(n-3), with a(0)=0, a(1)=a(2)=-3.

Original entry on oeis.org

0, -3, -3, -9, -6, -24, -9, -66, -3, -189, 57, -564, 360, -1749, 1644, -5607, 6681, -18465, 25650, -62076, 95415, -211878, 348321, -731049, 1256841, -2541468, 4501572, -8881245, 16046184, -31145307, 57019797, -109482105, 202204698, -385466112, 716096199
Offset: 0

Views

Author

Roman Witula, Aug 20 2012

Keywords

Comments

The Berndt-type sequence number 6 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. Two sequences connected with a(n) (possessing the respective numbers 5 and 7) are discussed in A215664 and A215666 - for more details see comments to A215664 and Witula's reference. We have a(n) - a(n+1) = A215664(n).
From initial values and the recurrence formula we deduce that a(n)/3 are all integers.
We note that a(10) is the first element of a(n) which is positive integer and all (-1)^n*a(n+10) are positive integer, which can be obtained from the title recurrence relation.
The following decomposition holds (X - c(1)*c(2)^n)*(X - c(2)*c(4)^n)*(X - c(4)*c(1)^n) = X^3 - a(n)*X^2 - A215917(n-1)*X + (-1)^n.
If X(n) = 3*X(n-2) - X(n-3), n in Z, with X(n) = a(n) for every n=0,1,..., then X(-n) = abs(A215919(n)) = (-1)^n*A215919(n) for every n=0,1,...

Examples

			We have a(1)=a(2)=a(8)=-3, a(3)=a(6)=-9, a(4)+a(11)=-10*a(10), and 47*a(5)=2*a(11).
		

References

  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math., (in press, 2012).
  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,-1}, {0,-3,-3}, 50]
  • PARI
    concat(0,Vec(-3*(1+x)/(1-3*x^2+x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012

Formula

a(n) = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n, where c(j) := 2*cos(2*Pi*j/9).
G.f.: -3*x*(1+x)/(1-3*x^2+x^3).

A215666 a(n) = 3*a(n-2) - a(n-3), with a(0)=0, a(1)=-3, and a(2)=6.

Original entry on oeis.org

0, -3, 6, -9, 21, -33, 72, -120, 249, -432, 867, -1545, 3033, -5502, 10644, -19539, 37434, -69261, 131841, -245217, 464784, -867492, 1639569, -3067260, 5786199, -10841349, 20425857, -38310246, 72118920, -135356595, 254667006, -478188705, 899357613
Offset: 0

Views

Author

Roman Witula, Aug 20 2012

Keywords

Comments

The Berndt-type sequence number 7 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. Two sequences connected with a(n) (possessing the respective numbers 5 and 6) are discussed in A215664 and A215665 - for more details see comments to A215664 and Witula's reference. We have a(n) = A215664(n+2) - 2*A215664(n) and a(n+1) = A215664(n+1) - A215664(n).
From initial values and the title recurrence formula we deduce that a(n)/3 and a(3*n)/9 are all integers.
If we set X(n) = 3*X(n-2) - X(n-3), n in Z, with a(n) = X(n), for every n=0,1,..., then X(-n) = -abs(A215917(n)) = (-1)^n*A215917(n), for every n=0,1,...

Examples

			We have 8*a(3)+a(6)=5*a(6)+3*a(7)=0, a(5) + a(12) = 3000, and (a(30)-1000*a(10)-a(2))/10^5 is an integer. Further we obtain  c(4)*cos(4*Pi/7)^7 + c(1)*cos(8*Pi/7)^7 + c(2)*c(2*Pi/7)^7 = -15/16.
		

References

  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math., (in press, 2012).
  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,-1}, {0,-3,6}, 50]
  • PARI
    concat(0,Vec(-3*(1-2*x)/(1-3*x^2+x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012

Formula

a(n) = c(4)*c(2)^n + c(1)*c(4)^n + c(2)*c(1)^n, where c(j) := 2*cos(2*Pi*j/9).
G.f.: -3*x*(1-2*x)/(1-3*x^2+x^3).
Showing 1-10 of 18 results. Next