cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A215634 a(n) = - 6*a(n-1) - 9*a(n-2) - 3*a(n-3) with a(0)=3, a(1)=-6, a(2)=18.

Original entry on oeis.org

3, -6, 18, -63, 234, -891, 3429, -13257, 51354, -199098, 772173, -2995218, 11619045, -45073827, 174857211, -678335958, 2631522330, -10208681991, 39603398850, -153636822171, 596016389349, -2312177133105, 8969825761002
Offset: 0

Views

Author

Roman Witula, Aug 18 2012

Keywords

Comments

The Berndt-type sequence number 2 for the argument 2Pi/9 . Similarly like the respective sequence number 1 -- see A215455 -- the sequence a(n) is connected with the following general recurrence relation: X(n+3) + 6*X(n+2) + 9*X(n+1) + ((2*cos(3*g))^2)*X(n) = 0, X(0)=3, X(1)=-6, X(2)=18. The Binet formula for this one has the form: X(n) = (-4)^n*((cos(g))^(2*n) + cos(g+Pi/3))^(2*n) + cos(g-Pi/3))^(2*n)) - for details see Witula-Slota's reference and comments to A215455.
The characteristic polynomial of a(n) has the form x^3 + 6*x^2 + 9*x + 3 = (x + (2*cos(Pi/18))^2)*(x+(2*cos(5*Pi/18))^2)*(x+(2*cos(7*Pi/18))^2). We note that (2*cos(Pi/18))^2 = 2 - c(4), (2*cos(5*Pi/18))^2 = 2 - c(2), and (2*cos(7*Pi/18))^2 = 2 - c(1), where c(j) = 2*cos(2*Pi*j/9) - see trigonometric relations for A215455. Furthermore all numbers a(n)*3^(-ceiling((n+1)/3)) are integers.

References

  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Magma
    I:=[3,-6,18]; [n le 3 select I[n] else -6*Self(n-1)-9*Self(n-2)-3*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 30 2017
  • Mathematica
    LinearRecurrence[{-6,-9,-3}, {3,-6,18}, 50]
    CoefficientList[Series[(3 + 12 x + 9 x^2)/(1 + 6 x + 9 x^2 + 3 x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 30 2017 *)
  • PARI
    Vec((3+12*x+9*x^2)/(1+6*x+9*x^2+3*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    

Formula

a(n) = (-4)^n*((cos(Pi/18))^(2*n) + (cos(5*Pi/18))^(2*n) + (cos(7*Pi/18))^(2*n)).
G.f.: (3 + 12*x + 9*x^2)/(1 + 6*x + 9*x^2 + 3*x^3).
a(n)*(-1)^n = s(1)^(2*n) + s(2)^(2*n) + s(4)^(2*n), where s(j) := 2*sin(2*Pi*j/9) -- for the proof see Witula's book. The respective sums with odd powers of sines in A216757 are given. - Roman Witula, Sep 15 2012

A215665 a(n) = 3*a(n-2) - a(n-3), with a(0)=0, a(1)=a(2)=-3.

Original entry on oeis.org

0, -3, -3, -9, -6, -24, -9, -66, -3, -189, 57, -564, 360, -1749, 1644, -5607, 6681, -18465, 25650, -62076, 95415, -211878, 348321, -731049, 1256841, -2541468, 4501572, -8881245, 16046184, -31145307, 57019797, -109482105, 202204698, -385466112, 716096199
Offset: 0

Views

Author

Roman Witula, Aug 20 2012

Keywords

Comments

The Berndt-type sequence number 6 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. Two sequences connected with a(n) (possessing the respective numbers 5 and 7) are discussed in A215664 and A215666 - for more details see comments to A215664 and Witula's reference. We have a(n) - a(n+1) = A215664(n).
From initial values and the recurrence formula we deduce that a(n)/3 are all integers.
We note that a(10) is the first element of a(n) which is positive integer and all (-1)^n*a(n+10) are positive integer, which can be obtained from the title recurrence relation.
The following decomposition holds (X - c(1)*c(2)^n)*(X - c(2)*c(4)^n)*(X - c(4)*c(1)^n) = X^3 - a(n)*X^2 - A215917(n-1)*X + (-1)^n.
If X(n) = 3*X(n-2) - X(n-3), n in Z, with X(n) = a(n) for every n=0,1,..., then X(-n) = abs(A215919(n)) = (-1)^n*A215919(n) for every n=0,1,...

Examples

			We have a(1)=a(2)=a(8)=-3, a(3)=a(6)=-9, a(4)+a(11)=-10*a(10), and 47*a(5)=2*a(11).
		

References

  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math., (in press, 2012).
  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,-1}, {0,-3,-3}, 50]
  • PARI
    concat(0,Vec(-3*(1+x)/(1-3*x^2+x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012

Formula

a(n) = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n, where c(j) := 2*cos(2*Pi*j/9).
G.f.: -3*x*(1+x)/(1-3*x^2+x^3).

A215666 a(n) = 3*a(n-2) - a(n-3), with a(0)=0, a(1)=-3, and a(2)=6.

Original entry on oeis.org

0, -3, 6, -9, 21, -33, 72, -120, 249, -432, 867, -1545, 3033, -5502, 10644, -19539, 37434, -69261, 131841, -245217, 464784, -867492, 1639569, -3067260, 5786199, -10841349, 20425857, -38310246, 72118920, -135356595, 254667006, -478188705, 899357613
Offset: 0

Views

Author

Roman Witula, Aug 20 2012

Keywords

Comments

The Berndt-type sequence number 7 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. Two sequences connected with a(n) (possessing the respective numbers 5 and 6) are discussed in A215664 and A215665 - for more details see comments to A215664 and Witula's reference. We have a(n) = A215664(n+2) - 2*A215664(n) and a(n+1) = A215664(n+1) - A215664(n).
From initial values and the title recurrence formula we deduce that a(n)/3 and a(3*n)/9 are all integers.
If we set X(n) = 3*X(n-2) - X(n-3), n in Z, with a(n) = X(n), for every n=0,1,..., then X(-n) = -abs(A215917(n)) = (-1)^n*A215917(n), for every n=0,1,...

Examples

			We have 8*a(3)+a(6)=5*a(6)+3*a(7)=0, a(5) + a(12) = 3000, and (a(30)-1000*a(10)-a(2))/10^5 is an integer. Further we obtain  c(4)*cos(4*Pi/7)^7 + c(1)*cos(8*Pi/7)^7 + c(2)*c(2*Pi/7)^7 = -15/16.
		

References

  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math., (in press, 2012).
  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,-1}, {0,-3,6}, 50]
  • PARI
    concat(0,Vec(-3*(1-2*x)/(1-3*x^2+x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012

Formula

a(n) = c(4)*c(2)^n + c(1)*c(4)^n + c(2)*c(1)^n, where c(j) := 2*cos(2*Pi*j/9).
G.f.: -3*x*(1-2*x)/(1-3*x^2+x^3).

A215885 a(n) = 3*a(n-1) - a(n-3), with a(0) = 3, a(1) = 3, and a(2) = 9.

Original entry on oeis.org

3, 3, 9, 24, 69, 198, 570, 1641, 4725, 13605, 39174, 112797, 324786, 935184, 2692755, 7753479, 22325253, 64283004, 185095533, 532961346, 1534601034, 4418707569, 12723161361, 36634883049, 105485941578, 303734663373, 874569107070, 2518221379632, 7250929475523
Offset: 0

Views

Author

Roman Witula, Aug 25 2012

Keywords

Comments

The Berndt-type sequence number 5a for the argument 2Pi/9 defined by the first relation from the section "Formula". We see that a(n) is equal to the sum of the n-th negative powers of the c(j) := 2*cos(2*Pi*j/9), j=1,2,4 (the A215664(n) is equal to the respective n-th positive powers, further both sequences can be obtained from the two-sided recurrence relation: X(n+3) = 3*X(n+1) - X(n), n in Z, with X(-1) = X(0) = 3, and X(1) = 0).
From the last formula in Witula's comments to A215664 it follows that 2*(-1)^n*a(n) = A215664(n)^2 - A215664(2*n).
The following decomposition holds true: (X - c(1)^(-n))*(X - c(2)^(-n))*(X - c(4)^(-n)) = X^3 - a(n)*X^2 - (-1)^n*A215664(n)*X - (-1)^n.
For n >= 1, a(n) is the number of cyclic (0,1,2)-compositions of n that avoid the pattern 110 provided the positions of the parts of the composition on the circle are fixed. (Similar comments hold for the pattern 012 and for the pattern 001.) - Petros Hadjicostas, Sep 13 2017
See the Maple program by Edlin and Zeilberger for counting the q-ary cyclic compositions of n that avoid one or more patterns provided the positions of the parts of the composition are fixed on the circle. The program is located at D. Zeilberger's personal website (see links). For the sequence here, q=3 and the pattern is A=110. - Petros Hadjicostas, Sep 13 2017

Examples

			For n=3, we have a(3) = 3^3 - 3 = 24 ternary cyclic compositions of n=3 (with fixed positions on the circle for the parts) that avoid 110 because we have to exclude 110, 101, and 011. - _Petros Hadjicostas_, Sep 13 2017
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,0,-1}, {3,3,9}, 50]
  • PARI
    my(x='x+O('x^30)); Vec(3*(1-2*x)/(1-3*x+x^3)) \\ Altug Alkan, Sep 13 2017

Formula

a(n) = 3*A147704(n).
a(n) = c(1)^(-n) + c(2)^(-n) + c(4)^(-n) = (-c(1)*c(2))^n + (-c(1)*c(4))^n + (-c(2)*c(4))^n, where c(j) := 2*cos(2*Pi*j/9).
G.f.: Sum_{n>=0} a(n)*x^n = 3-3*x*(x^2-1)/(1-3*x+x^3) = 3*(1-2*x)/(1-3*x+x^3).
G.f. of Edlin and Zeilberger (2000): 1+Sum_{n>=1} a(n)*x^n = 1-3*x*(x^2-1)/(1-3*x+x^3) = (1-2*x^3)/(1-3*x+x^3). - Petros Hadjicostas, Sep 13 2017
a(n) = ceiling(r^n) for n >= 1, where r = 1/A130880 is the largest root of x^3 - 3*x^2 + 1. - Tamas Lengyel, Feb 20 2022

A215636 a(n) = - 12*a(n-1) - 54*a(n-2) - 112*a(n-3) - 105*a(n-4) - 36*a(n-5) - 2*a(n-6) with a(0)=a(1)=a(2)=0, a(3)=-3, a(4)=24, a(5)=-135.

Original entry on oeis.org

0, 0, 0, -3, 24, -135, 660, -3003, 13104, -55689, 232500, -958617, 3916440, -15890355, 64127700, -257698347, 1032023136, -4121456625, 16421256420, -65301500577, 259259758056, -1027901275131, 4070632899300, -16104283594083, 63657906293520, -251447560563465, 992593021410900
Offset: 0

Views

Author

Roman Witula, Aug 18 2012

Keywords

Comments

The Berndt-type sequence number 4 for the argument 2*Pi/9 defined by the relation: X(n) = b(n) + a(n)*sqrt(2), where X(n) := ((cos(Pi/24))^(2*n) + (cos(7*Pi/24))^(2*n) + (cos(3*Pi/8))^(2*n))*(-4)^n. We have b(n) = A215635(n) (see also section "Example" below). For more details - see comments to A215635, A215634 and Witula-Slota's reference.

Examples

			We have X(1)=-6, X(2)=18 and X(3)=-60-3*sqrt(2), which implies the equality: (cos(Pi/24))^6 + (cos(7*Pi/24))^6 + (cos(3*Pi/8))^6 = (60+3*sqrt(2))/64.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-12,-54,-112,-105,-36,-2}, {0,0,0,-3,24,-135}, 50]

Formula

G.f.: (-3*x^3-12*x^4-9*x^5)/(1+12*x+54*x^2+112*x^3+105*x^4+36*x^5+2*x^6).

A215829 a(n) = -3*a(n-1) + 9*a(n-2) + 3*a(n-3), with a(0)=3, a(1)=-3, a(2)=27.

Original entry on oeis.org

3, -3, 27, -99, 531, -2403, 11691, -55107, 263331, -1250883, 5957307, -28339875, 134882739, -641835171, 3054430539, -14535159939, 69169849155, -329162695299, 1566411248475, -7454188455651, 35472778517331, -168806797907427, 803312835011307
Offset: 0

Views

Author

Roman Witula, Aug 24 2012

Keywords

Comments

The Berndt-type sequence number 8 for the argument 2*Pi/9 defined by the trigonometric relations from the Formula section below.
From the general recurrence relation: b(n) = -3*b(n-1) + 9*b(n-2) + 3*b(n-3), i.e., b(n) - b(n-2) = 8*b(n-2) + 3(b(n-3) - b(n-1)) the following summation formulas can be easily deduced: b(2*n+1) + 3*b(2*n) - 3*b(0) - b(1) = 8*Sum_{k=1..n} b(2*k-1) and b(2*n+2) + 3*b(2*n+1) - b(2) - 3*b(1) = 8*Sum_{k=1..n} b(2*k). Hence it follows that (a(2*n+1) + 3*a(2*n))/2 are all integers congruent to 3 modulo 4, and (a(2*n+2) + 3*a(2*n+1))/2 are all integers congruent to 1 modulo 4.
We note that all numbers 3^(-1-floor(n/3))*a(n) = A215831(n) and 3^(-n-2)*a(3*n+2) are integers.
The following decomposition holds true: (X - k(1)^n)*(X - (-k(2))^n)*(X - k(3)^n) = X^3 - sqrt(3)^(-n)*a(n)*X^2 + sqrt(3)^(-n)*T(n) - sqrt(3)^(-n), where T(2*n+1) = sqrt(3)*A215945(n) and T(2*n) = A215948(n). [Roman Witula, Aug 30 2012]

Examples

			We have k(1)^3 - k(2)^3 + k(4)^3 = -11*sqrt(3).
		

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-3, 9, 3}, {3, -3, 27}, 50]

Formula

a(n) = (k(1)^n + (-k(2))^n + k(4)^n)*(sqrt(3))^n = (-1+4*c(1))^n + (-1+4*c(2))^n + (-1+4*c(4))^n, where k(j) := cot(2*Pi*j/9) and c(j) := cos(2*Pi*j/9).
G.f.: (3 + 6*x - 9*x^2)/(1 + 3*x - 9*x^2 - 3*x^3). [corrected by Georg Fischer, May 10 2019]

A215917 a(n) = -3*a(n-1) + a(n-3), with a(0)=0, a(1)=6, and a(2)=-15.

Original entry on oeis.org

0, 6, -15, 45, -129, 372, -1071, 3084, -8880, 25569, -73623, 211989, -610398, 1757571, -5060724, 14571774, -41957751, 120812529, -347865813, 1001639688, -2884106535, 8304453792, -23911721688, 68851058529, -198248721795, 570834443697, -1643652272562
Offset: 0

Views

Author

Roman Witula, Aug 27 2012

Keywords

Comments

The Berndt-type sequence number 9 for the argument 2Pi/9 defined by the first relation from the section "Formula" below.
We have a(n) = 3*(-1)^(n+1)*A215448(n+1). From the recurrence formula for a(n) it follows that all a(3*n) are divisible by 9, a(3*n+1)/3 are congruent to 2 modulo 3, and a(3*n+2)/3 are congruent to 1 modulo 3. In the consequence also all sums a(n)+a(n+1)+a(n+2) are divisible by 9.
From general recurrence X(n) = -3*X(n-1) + X(n-3) the following formula can be deduced: 3*Sum_{k=2..n-1} X(k) = -X(n)-X(n-1)-X(n-2)+X(2)+X(1)+X(0). Hence, in the case of a(n) we obtain 3*Sum_{k=2..n-1} a(k) = -a(n)-a(n-1)-a(n-2)-9.
If we set X(n) = -3*X(n-1) + X(n-3), n in Z, with a(n) = X(n) for n=0,1,... then X(-n) = abs(A215666(n)) = (-1)^n*A215666(n), for every n=0,1,...
The following decomposition holds true (X - c(1)*(-c(4))^(-n))*(X - c(2)*(-c(1))^(-n))*(X - c(4)*(-c(2))^(-n)) = X^3 - a(n)*X^2 + (-1)^n*(A215665(n) - A215664(n))*X + 1.

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).

Crossrefs

Programs

  • Maple
    We have a(3) + 3*a(2) = 0, a(8) + 24*a(5) = 48 = a(3) + a(1)/2.
  • Mathematica
    LinearRecurrence[{-3,0,1}, {0,6,-15}, 50]
  • PARI
    concat(0,Vec(3*(x+2)/(1+3*x-x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012

Formula

a(n) = c(1)*(-c(4))^(-n) + c(2)*(-c(1))^(-n) + c(4)*(-c(2))^(-n), where c(j) := 2*cos(2*Pi*j/9).
a(n) = (-1)^n*(A215885(n+1) - A215885(n)).
G.f.: 3*x(x+2)/(1+3*x-x^3).

A094649 An accelerator sequence for Catalan's constant.

Original entry on oeis.org

4, 1, 7, 4, 19, 16, 58, 64, 187, 247, 622, 925, 2110, 3394, 7252, 12289, 25147, 44116, 87727, 157492, 307294, 560200, 1079371, 1987891, 3798310, 7043041, 13382818, 24927430, 47191492, 88165105, 166501903, 311686804, 587670811, 1101562312
Offset: 0

Views

Author

Paul Barry, May 18 2004

Keywords

Comments

From L. Edson Jeffery, Apr 03 2011: (Start)
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(9,1) =
(0 1 0 0)
(1 0 1 0)
(0 1 0 1)
(0 0 1 1).
Then a(n) = Trace(U^n). (End)
a(n)==1 (mod 3), a(3*n+1)==1 (mod 9). - Roman Witula, Sep 14 2012

Examples

			We have a(0)+a(3)=a(1)+a(2)=8, a(3)+a(4)=a(2)+a(5)=23, and a(7)+a(8)=a(9)+a(3)=247. - _Roman Witula_, Sep 14 2012
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 3, -2, -1}, {4, 1, 7, 4}, 34] (* Jean-François Alcover, Sep 21 2017 *)
  • PARI
    Vec((4-3*x-6*x^2+2*x^3)/(1-x-3*x^2+2*x^3+x^4)+O(x^66)) /* Joerg Arndt, Apr 08 2011 */

Formula

G.f.: ( 4-3*x-6*x^2+2*x^3 ) / ( (x-1)*(x^3+3*x^2-1) )
a(n) = 1+(2*cos(Pi/9))^n+(-2*sin(Pi/18))^n+(-2*cos(2*Pi/9))^n.
a(n) = 2^n*Sum_{k=1..4} cos((2*k-1)*Pi/9)^n. - L. Edson Jeffery, Apr 03 2011
a(n) = 1 + (-1)^n*A215664(n), which is compatible with the last two formulas above. - Roman Witula, Sep 14 2012
a(n) = 3*a(n-2) + a(n-3) - 3, with a(0)=4, a(1)=1, and a(2)=7. - Roman Witula, Sep 14 2012

A188048 Expansion of (1 - x^2)/(1 - 3*x^2 - x^3).

Original entry on oeis.org

1, 0, 2, 1, 6, 5, 19, 21, 62, 82, 207, 308, 703, 1131, 2417, 4096, 8382, 14705, 29242, 52497, 102431, 186733, 359790, 662630, 1266103, 2347680, 4460939, 8309143, 15730497, 29388368, 55500634, 103895601, 195890270, 367187437, 691566411, 1297452581
Offset: 0

Views

Author

L. Edson Jeffery, Mar 19 2011

Keywords

Comments

Sequence is related to rhombus substitution tilings.

Crossrefs

Cf. A052931.

Programs

  • Magma
    I:=[1,0,2,1]; [n le 4 select I[n] else Self(n-1)+3*Self(n-2)-2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 22 2015
  • Maple
    F:= gfun:-rectoproc({a(n)=3*a(n-2)+a(n-3),a(0)=1,a(1)=0,a(2)=2},a(n),remember):
    map(F, [$0..100]); # Robert Israel, Jun 21 2015
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-3x^2-x^3),{x,0,40}],x]  (* Harvey P. Dale, Mar 31 2011 *)
    LinearRecurrence[{0,3,1}, {1,0,2}, 50] (* Roman Witula, Aug 20 2012 *)
  • PARI
    abs(polsym(1-3*x+x^3,66)/3) /* Joerg Arndt, Aug 19 2012 */
    

Formula

G.f.: (1 - x^2)/(1 - 3*x^2 - x^3).
a(n) = 3*a(n-2)+a(n-3), for n>=3, with a(0)=1, a(1)=0, a(2)=2.
a(n) = a(n-1)+3*a(n-2)-2*a(n-3)-a(n-4), for n>=4, with {a(k)}={1,0,2,1}, k=0,1,2,3.
a(n) = A187497(3*n+1).
a(n) = m_(3,3), where (m_(i,j)) = (U_1)^n, i,j=1,2,3,4 and U_1 is the tridiagonal unit-primitive matrix [0, 1, 0, 0; 1, 0, 1, 0; 0, 1, 0, 1; 0, 0, 1, 1].
3*(-1)^n*a(n) = A215664(n). - Roman Witula, Aug 20 2012
a(2n) = A094831(n); a(2n+1) = A094834(n). - John Blythe Dobson, Jun 20 2015
a(n) = A052931(n)-A052931(n-2). - R. J. Mathar, Nov 03 2020
a(n) = (2^n/3)*(cos^n(Pi/9) + cos^n(5*Pi/9) + cos^n(7*Pi/9)). - Greg Dresden, Sep 24 2022

A215919 a(n) = -3*a(n-1) + a(n-3), with a(0)=0, a(1)=-3, a(2)=12.

Original entry on oeis.org

0, -3, 12, -36, 105, -303, 873, -2514, 7239, -20844, 60018, -172815, 497601, -1432785, 4125540, -11879019, 34204272, -98487276, 283582809, -816544155, 2351145189, -6769852758, 19493014119, -56127897168, 161613838746, -465348502119, 1339917609189, -3858138988821
Offset: 0

Views

Author

Roman Witula, Aug 27 2012

Keywords

Comments

The Berndt-type sequence number 10 for the argument 2Pi/9 defined by the first trigonometric relation from the section "Formula" below. The sequence a(n) is connected with sequences A215917 and A215885 - see the respective formula.
We have A035045(n)=abs(a(n+1)/3) for every n=0,1,...,5 and A035045(7) + a(7)/3 = 1, A035045(8) - a(8)/3 = 10, A035045(9) + a(9)/3 = 63, and A035045(10) - a(10)/3 = 320 - all these four results-numbers are in A069269.

Examples

			We have a(2)=-4*a(1), a(3)=-3*a(2), a(6)/a(3) = -24.25, and a(9) = 579*a(3).
		

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-3, 0, 1}, {0, -3, 12}, 50]

Formula

a(n) = c(1)*(-c(2))^(-n) + c(2)*(-c(4))^(-n) + c(4)*(-c(1))^(-n), where c(j) := 2*cos(2*Pi*j/9).
a(n) = A215917(n+1) + A215917(n) - 2*(-1)^n*A215885(n).
G.f.: -3*x*(1-x)/(1+3*x-x^3).
Showing 1-10 of 13 results. Next