cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A215664 a(n) = 3*a(n-2) - a(n-3), with a(0)=3, a(1)=0, and a(2)=6.

Original entry on oeis.org

3, 0, 6, -3, 18, -15, 57, -63, 186, -246, 621, -924, 2109, -3393, 7251, -12288, 25146, -44115, 87726, -157491, 307293, -560199, 1079370, -1987890, 3798309, -7043040, 13382817, -24927429, 47191491, -88165104, 166501902, -311686803, 587670810, -1101562311
Offset: 0

Views

Author

Roman Witula, Aug 20 2012

Keywords

Comments

The Berndt-type sequence number 5 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. The respective sums with negative powers of the cosines form the sequence A215885. Additionally if we set b(n) = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n and c(n) = c(4)*c(2)^n + c(1)*c(4)^n + c(2)*c(1)^n, where c(j):=2*cos(2*Pi*j/9), then the following system of recurrence equations holds true: b(n) - b(n+1) = a(n), a(n+1) - a(n) = c(n+1), a(n+2) - 2*a(n)=c(n). All three sequences satisfy the same recurrence relation: X(n+3) - 3*X(n+1) + X(n) = 0. Moreover we have a(n+1) + A215665(n) + A215666(n) = 0 since c(1) + c(2) + c(4) = 0, b(n)=A215665(n) and c(n)=A215666(n).
If X(n) = 3*X(n-2) - X(n-3), n in Z, with X(n) = a(n) for every n=0,1,..., then X(-n) = A215885(n) for every n=0,1,...
From initial values and the recurrence formula we deduce that a(n)/3 and a(3n+1)/9 are all integers. We have a(n)=3*(-1)^n *A188048(n) and a(2n)=A215455(n). Furthermore the following decomposition holds: (X - c(1)^n)*(X - c(2)^n)*(X - c(4)^n) = X^3 - a(n)*X^2 + ((a(n)^2 - a(2*n))/2)*X + (-1)^(n+1), which implies the relation (c(1)*c(2))^n + (c(1)*c(4))^n + (c(2)*c(4))^n = (-c(1))^(-n) + (-c(2))^(-n) + (-c(4))^(-n) = (a(n)^2 - a(2*n))/2.

Examples

			We have c(1)^2 + c(2)^2 + c(4)^2 + 2*(c(1)^3 + c(2)^3 + c(4)^3) = 0 and 3*a(7) + a(8) = a(3).
		

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,-1}, {3,0,6}, 50]
  • PARI
    Vec(3*(1-x^2)/(1-3*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

a(n) = c(1)^n + c(2)^n + c(4)^n, where c(j) := 2*cos(2*Pi*j/9).
G.f.: 3*(1-x^2)/(1-3*x^2+x^3).

A094831 Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 3.

Original entry on oeis.org

1, 2, 6, 19, 62, 207, 703, 2417, 8382, 29242, 102431, 359790, 1266103, 4460939, 15730497, 55500634, 195890270, 691566411, 2441886670, 8623112591, 30453261927, 107553444913, 379864424726, 1341658806066, 4738726458775
Offset: 0

Views

Author

Herbert Kociemba, Jun 13 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n) counts (s(0), s(1), ..., s(2n)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = j, s(2n) = k.
A comparison of their recurrence relations shows that this sequence is the even bisection of A188048. - John Blythe Dobson, Jun 20 2015

Crossrefs

Cf. A188048.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 4 x + 3 x^2)/(1 - 6 x + 9 x^2 - x^3), {x, 0, 24}], x] (* Michael De Vlieger, Feb 12 2022 *)
  • PARI
    Vec((1-4*x+3*x^2)/(1-6*x+9*x^2-x^3) + O(x^30)) \\ Michel Marcus, Jun 21 2015

Formula

a(n) = (2/9) * Sum_{r=1..8} sin(r*Pi/3)^2*(2*cos(r*Pi/9))^(2*n).
a(n) = 6*a(n-1) - 9*a(n-2) + a(n-3).
G.f.: (1-4*x+3*x^2)/(1-6*x+9*x^2-x^3).

A094233 Number of closed walks of length n at a vertex of the cyclic graph on 9 nodes C_9.

Original entry on oeis.org

1, 0, 2, 0, 6, 0, 20, 0, 70, 2, 252, 22, 924, 156, 3432, 910, 12870, 4760, 48622, 23256, 184796, 108528, 705894, 490314, 2708204, 2163150, 10430500, 9373652, 40313160, 40060078, 156305070, 169345560, 607812102, 709645552, 2369918628, 2952780320
Offset: 0

Views

Author

Herbert Kociemba, May 29 2004

Keywords

Comments

In general, a(n,m) = (2^n/m)*Sum_{k=0..m-1} cos(2*Pi*k/m)^n gives the number of closed walks of length n at a vertex of the cyclic graph on m nodes C_m.

Crossrefs

Programs

  • Mathematica
    f[n_] := FullSimplify[ TrigToExp[ 2^n/9 Sum[ Cos[2Pi*k/9]^n, {k, 0, 8}]]]; Table[ f[n], {n, 0, 40}] (* Robert G. Wilson v, Jun 01 2004 *)

Formula

a(n) = (2^n/9)*Sum_{k=0..8} cos(2*Pi*k/9)^n.
G.f.: -(x-1)*(x^3+3*x^2-1)/((2*x-1)*(x+1)*(x^3-3*x^2+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
9*a(n) = 2*(-1)^n +2^n +6*(-1)^n*A188048(n). - R. J. Mathar, Nov 03 2020

Extensions

More terms from Robert G. Wilson v, Jun 01 2004

A094834 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 3, s(2n+1) = 6.

Original entry on oeis.org

1, 5, 21, 82, 308, 1131, 4096, 14705, 52497, 186733, 662630, 2347680, 8309143, 29388368, 103895601, 367187437, 1297452581, 4583924154, 16193659132, 57204089987, 202065531888, 713750040577, 2521114546457, 8905002445437
Offset: 1

Views

Author

Herbert Kociemba, Jun 13 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k.
This sequence is the odd bisection of A188048. - John Blythe Dobson, Jun 20 2015

Programs

  • Magma
    I:=[1,5,21]; [n le 3 select I[n] else 6*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 21 2015
  • Mathematica
    CoefficientList[Series[(x - 1)/(- 1 + 6 x - 9 x^2 + x^3), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 21 2015 *)
    LinearRecurrence[{6,-9,1},{1,5,21},30] (* Harvey P. Dale, Dec 27 2019 *)

Formula

a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/3)*sin(2*r*Pi/3)*(2*cos(r*Pi/9))^(2n+1).
a(n) = 6*a(n-1) - 9*a(n-2) + a(n-3).
G.f.: x(-1+x)/(-1 + 6x - 9x^2 + x^3).
a(n) = A094829(n+1) - A094829(n). - R. J. Mathar, Nov 15 2019
Showing 1-4 of 4 results.